Differentiation of Power Series

Created by

Barbara Forrest and Brian Forrest

Functions Represented by Power Series

Question: Assume that the series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ has radius of convergence
$\boldsymbol{R}>\mathbf{0}$ and interval of convergence \boldsymbol{I}. What are the properties of the function

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n} ?
$$

1. Is f continuous on I ?

Theorem: [Abel's Theorem: Continuity of Power Series]
Assume that the power series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ has interval of convergence I.
Let

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}
$$

for each $\boldsymbol{x} \in \boldsymbol{I}$. Then f is continuous on \boldsymbol{I}.
2. Is f differentiable on $(a-R, a+R)$?

Differentiation of Power Series

Strategy: If we have a function

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}
$$

that is represented by a power series with radius of convergence $R>0$, we could try to differentiate f by differentiating the series one term at a time.

Since $\frac{d}{d x}\left(a_{n}(x-a)^{n}\right)=n a_{n}(x-a)^{n-1}$, we get:

Definition: [Formal Derivative of a Power Series]

Given a power series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$, the formal derivative is the series

$$
\sum_{n=1}^{\infty} n a_{n}(x-a)^{n-1}
$$

Differentiation of Power Series

Two Fundamental Problems:

Problem 1: For which values of x does the formal power series

$$
\sum_{n=1}^{\infty} n a_{n}(x-a)^{n-1}
$$

converge? In particular, does this series converge for the same values as the original series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$?

Problem 2: If both of the series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ and
$\sum_{n=1}^{\infty} n a_{n}(x-a)^{n-1}$ converge at the same x, must it be the case that

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n}(x-a)^{n-1} ?
$$

Differentiation of Power Series

Problem 1: For which values of x does the formal power series

$$
\sum_{n=1}^{\infty} n a_{n}(x-a)^{n-1}
$$

converge? In particular, does this series converge for the same values as the original series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$?

Observation: The series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ and the series $\sum_{n=0}^{\infty} n a_{n}(x-a)^{n}$ have the same radius of convergence.
We can show that the series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ and its formal derivative $\sum_{n=1}^{\infty} n a_{n}(x-a)^{n-1}$ also have the same radius of convergence, though the interval of convergence may be different. Therefore,

$$
g(x)=\sum_{n=1}^{\infty} n a_{n}(x-a)^{n-1}
$$

is defined for all $x \in(a-R, a+R)$. Is $g(x)=f^{\prime}(x)$?

Differentiation of Power Series

Theorem: [Differentiation of Power Series]

Assume that the power series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ has radius of convergence $\boldsymbol{R}>\mathbf{0}$. Let

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}
$$

for all $x \in(a-R, a+R)$. Then f is differentiable on $(a-R, a+R)$ and for each $x \in(a-R, a+R)$,

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n}(x-a)^{n-1}
$$

Differentiation of Power Series

Example: If $|x|<1$, then let

$$
f(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

Differentiating term-by-term, we get

$$
f^{\prime}(x)=\frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n-1}
$$

Question: Evaluate

$$
\sum_{n=1}^{\infty} \frac{n}{2^{n-1}}
$$

Observation: This series is obtained from $\sum_{n=1}^{\infty} n x^{n-1}$ by letting $x=\frac{1}{2}$. Therefore,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{n}{2^{n-1}} & =f^{\prime}\left(\frac{1}{2}\right) \\
& =\frac{1}{\left(1-\frac{1}{2}\right)^{2}} \\
& =4
\end{aligned}
$$

Differentiation of Power Series

Example: For any $x \in \mathbb{R}$ let

$$
g(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=\frac{x^{0}}{0!}+\frac{x^{1}}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

Term-by-term differentiation gives

$$
\begin{aligned}
g^{\prime}(x) & =\sum_{n=1}^{\infty} \frac{n x^{n-1}}{n!} \\
& =\sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} \\
& =\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
& =g(x)
\end{aligned}
$$

Hence

$$
g(x)=C e^{x}
$$

for some constant C. However, $C=g(0)=1$, so

$$
g(x)=e^{x}
$$

Differentiation of Power Series

Example: Find a power series representation for the function

$$
f(x)=e^{-x^{2}}
$$

We have that for any $u \in \mathbb{R}$ that

$$
\begin{equation*}
e^{u}=\sum_{n=0}^{\infty} \frac{u^{n}}{n!} \tag{*}
\end{equation*}
$$

Let $u=-x^{2}$ and substitute for u in the expression (*) to get
for all $x \in \mathbb{R}$.

$$
e^{-x^{2}}=\sum_{n=0}^{\infty} \frac{\left(-x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{n!}
$$

Note: It may look like

$$
e^{-x^{2}}=1-\frac{x^{2}}{1!}+\frac{x^{4}}{2!}-\frac{x^{6}}{3!}+\cdots+(-1)^{n} \frac{x^{2 n}}{n!}+\cdots
$$

is not a power series since there are no terms involving x^{n} when n is odd. But in fact, it really is a power series where the coefficients are of the form $a_{2 k-1}=0$ and $a_{2 k}=(-1)^{k} \frac{1}{(k)!}$ for each $k=0,1,2,3,4, \ldots$

A Strange Function

Question: Why are power series so special?
Example: Let

$$
f(x)=\sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n} \sin \left(9^{n} x\right)
$$

for all $x \in \mathbb{R}$.

Fact: The function f is continuous on \mathbb{R} but it is not differentiable at a single point.

