Building Power Series

Created by

Barbara Forrest and Brian Forrest

Functions Represented by Power Series

Definition: [Functions Represented by a Power Series]

Let $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ be a power series with radius of convergence
$R>0$. Let I be the interval of convergence for $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$.
Let f be the function defined on the interval I by the formula

$$
\begin{equation*}
f\left(x_{0}\right)=\sum_{n=0}^{\infty} a_{n}\left(x_{0}-a\right)^{n} \tag{*}
\end{equation*}
$$

for each $x_{0} \in I$.
We say that the function f is represented by the power series
$\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ on I.

Functions Represented by Power Series

Question: Suppose that f and g are represented by power series centered at $x=a$ of the form

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n} \text { and } g(x)=\sum_{n=0}^{\infty} b_{n}(x-a)^{n}
$$

with intervals of convergence I_{f} and I_{g} respectively.
Can this information be used to build a power series representation for $f+g$?
Observation: If $x_{0} \in I_{f} \cap I_{g}$, then

$$
\begin{aligned}
(f+g)\left(x_{0}\right) & =f\left(x_{0}\right)+g\left(x_{0}\right) \\
& =\lim _{k \rightarrow \infty} \sum_{n=0}^{k} a_{n}\left(x_{0}-a\right)^{n}+\lim _{k \rightarrow \infty} \sum_{n=0}^{k} b_{n}\left(x_{0}-a\right)^{n} \\
& =\lim _{k \rightarrow \infty} \sum_{n=0}^{k}\left(a_{n}+b_{n}\right)\left(x_{0}-a\right)^{n} \\
& =\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right)\left(x_{0}-a\right)^{n}
\end{aligned}
$$

Sums of Power Series

Theorem: [Addition of Power Series]

Assume that f and g are represented by power series centered at $\boldsymbol{x}=\boldsymbol{a}$ with

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}
$$

and

$$
g(x)=\sum_{n=0}^{\infty} b_{n}(x-a)^{n},
$$

respectively.
Assume also that the radii of convergence of these series are \boldsymbol{R}_{f} and \boldsymbol{R}_{g} with intervals of convergence \boldsymbol{I}_{f} and $\boldsymbol{I}_{\boldsymbol{g}}$. Then if $\boldsymbol{x} \in \boldsymbol{I}_{\boldsymbol{f}} \cap \boldsymbol{I}_{\boldsymbol{g}}$,

$$
(f+g)(x)=\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right)(x-a)^{n} .
$$

Moreover, if $R_{f} \neq R_{g}$, then the radius of convergence of the power series representing $f+g$ is $R=\min \left\{R_{f}, R_{g}\right\}$ and the interval of convergence is $I=I_{f} \cap I_{g}$.
If $\boldsymbol{R}_{f}=\boldsymbol{R}_{g}$, then $\boldsymbol{R} \geq \boldsymbol{R}_{f}$.

Multiplication by $(x-a)^{m}$

Remark: Assume that $h(x)=(x-a)^{m} f(x)$ where $m \in \mathbb{N}$. We might guess that h would be represented by the following power series centered at $x=a$:

$$
h(x)=(x-a)^{m} \sum_{n=0}^{\infty} a_{n}(x-a)^{n}=\sum_{n=0}^{\infty} a_{n}(x-a)^{n+m} .
$$

Observation: If $x_{0} \in I_{f}$, then

$$
\begin{aligned}
h\left(x_{0}\right) & =\left(x_{0}-a\right)^{m} f\left(x_{0}\right) \\
& =\left(x_{0}-a\right)^{m} \lim _{k \rightarrow \infty} \sum_{n=0}^{k} a_{n}\left(x_{0}-a\right)^{n} \\
& =\lim _{k \rightarrow \infty} \sum_{n=0}^{k} a_{n}\left(x_{0}-a\right)^{n+m} \\
& =\sum_{n=0}^{\infty} a_{n}\left(x_{0}-a\right)^{n+m}
\end{aligned}
$$

Multiplication by $(x-a)^{m}$

Theorem: [Multiplication of Power Series by $(x-a)^{m}$]
Assume that f is represented by a power series centered at $x=a$ as

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}
$$

with radius of convergence $\boldsymbol{R}_{\boldsymbol{f}}$ and interval of convergence $\boldsymbol{I}_{\boldsymbol{f}}$. Assume that $h(x)=(x-a)^{m} f(x)$ where $m \in \mathbb{N}$. Then h can also be represented by a power series centered at $x=a$ with

$$
h(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n+m}
$$

Moreover, the series that represents h has the same radius of convergence and the same interval of convergence as the series that represents f.

Multiplication by $(x-a)^{m}$

Example: Find a power series representation centered at $x=0$ for

$$
h(x)=\frac{x}{1-x} .
$$

Note: We have that

$$
h(x)=x \cdot \frac{1}{1-x}
$$

and

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

for all $x \in(-1,1)$.
Hence

$$
h(x)=\frac{x}{1-x}=x \cdot \sum_{n=0}^{\infty} x^{n}=\sum_{n=0}^{\infty} x^{n+1}
$$

for all $x \in(-1,1)$.

Composition with $c \cdot x^{m}$

Question: Assume that f has a power series representation

$$
f(u)=\sum_{n=0}^{\infty} a_{n} u^{n}
$$

centered at $u=\mathbf{0}$ with interval of convergence \boldsymbol{I}_{f}.
Can we find a power series representation for

$$
h(x)=f\left(c \cdot x^{m}\right)
$$

centered at $x=0$ where c is some non-zero constant?
Observation: If we choose x_{0} so that $c \cdot x_{0}^{m} \in I_{f}$, then substituting $c \cdot x_{0}^{m}$ for u gives us

$$
h\left(x_{0}\right)=f\left(c \cdot x_{0}^{m}\right)=\sum_{n=0}^{\infty} a_{n}\left(c \cdot x_{0}^{m}\right)^{n}=\sum_{n=0}^{\infty}\left(a_{n} \cdot c^{n}\right) x_{0}^{m n} .
$$

Composition with $c \cdot x^{m}$

Theorem: [Composition with $c \cdot x^{m}$]
Assume that f has a power series representation

$$
f(u)=\sum_{n=0}^{\infty} a_{n} u^{n}
$$

centered at $\boldsymbol{u}=\mathbf{0}$ with radius of convergence \boldsymbol{R}_{f} and interval of convergence \boldsymbol{I}_{f}. Let $\boldsymbol{h}(\boldsymbol{x})=f\left(\boldsymbol{c} \cdot \boldsymbol{x}^{m}\right)$ where \boldsymbol{c} is a non-zero constant. Then \boldsymbol{h} has a power series representation centered at $x=0$ of the form

$$
h(x)=f\left(c \cdot x^{m}\right)=\sum_{n=0}^{\infty}\left(a_{n} \cdot c^{n}\right) x^{m n}
$$

The interval of convergence is

$$
I_{h}=\left\{x \in \mathbb{R} \mid c \cdot x^{m} \in I_{f}\right\}
$$

and the radius of convergence is $\boldsymbol{R}_{\boldsymbol{h}}=\sqrt[m]{\frac{\boldsymbol{R}_{f}}{|c|}}$ if $\boldsymbol{R}_{\boldsymbol{f}}<\infty$ and $\boldsymbol{R}_{\boldsymbol{h}}=\infty$ otherwise.

Example

Question: Find a power series representation for $f(x)=\frac{x}{1-2 x^{2}}$ centered at $x=0$.

Solution: We know that

$$
\frac{1}{1-u}=\sum_{n=0}^{\infty} u^{n}
$$

for $u \in(-1,1)$. Then

$$
\frac{1}{1-2 x^{2}}=\sum_{n=0}^{\infty}\left(2 x^{2}\right)^{n}=\sum_{n=0}^{\infty} 2^{n} x^{2 n}
$$

provided that

$$
2 x^{2} \in(-1,1) \Rightarrow x^{2} \in\left(-\frac{1}{2}, \frac{1}{2}\right) .
$$

Therefore,

$$
\frac{x}{1-2 x^{2}}=x \cdot \sum_{n=0}^{\infty} 2^{n} x^{2 n}=\sum_{n=0}^{\infty} 2^{n} x^{2 n+1}
$$

if and only if $x \in\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

