Binomial Series

Created by
Barbara Forrest and Brian Forrest

Binomial Theorem

Theorem: [Binomial Theorem]

Let $a \in \mathbb{R}$ and $n \in \mathbb{N}$. Then for each $x \in \mathbb{R}$ we have that

$$
(a+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} x^{k}
$$

where

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

In particular, when $a=1$ we have

$$
(1+x)^{n}=1+\sum_{k=1}^{n} \frac{n(n-1)(n-2) \cdots(n-k+1)}{k!} x^{k}
$$

Binomial Theorem

Observation: Consider the expression

$$
\frac{n(n-1)(n-2) \cdots(n-k+1)}{k!}
$$

If $\boldsymbol{k}>\boldsymbol{n}$, then one of the terms in the expression

$$
n(n-1)(n-2) \cdots(n-k+1)
$$

will be 0 and hence we would have

$$
\frac{n(n-1)(n-2) \cdots(n-k+1)}{k!}=0
$$

Consequently, we also have

$$
(1+x)^{n}=1+\sum_{k=1}^{\infty} \frac{n(n-1)(n-2) \cdots(n-k+1)}{k!} x^{k}
$$

Hence the polynomial function $(1+x)^{n}$ is actually represented by the power series

$$
1+\sum_{k=1}^{\infty} \frac{n(n-1)(n-2) \cdots(n-k+1)}{k!} x^{k}
$$

Binomial Series

Question: Suppose that $\alpha \in \mathbb{R}$. Is there an analog of the Binomial Theorem for the function

$$
(1+x)^{\alpha} \quad ?
$$

Definition: [Generalized Binomial Coefficients and Binomial Series]

Let $\alpha \in \mathbb{R}$ and let $k \in\{0,1,2,3, \ldots\}$. Then we define the generalized binomial coefficient α choose k by

$$
\binom{\alpha}{k}=\frac{\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-k+1)}{k!}
$$

if $\boldsymbol{k} \neq 0$ and

$$
\binom{\alpha}{0}=1
$$

We also define the generalized binomial series for $\boldsymbol{\alpha}$ to be the power series

$$
1+\sum_{k=1}^{\infty} \frac{\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-k+1)}{k!} x^{k}=\sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k}
$$

Binomial Series

Remark: If $b_{k}=\left|\binom{\alpha}{k}\right|$. Then for $k \geq 1$

$$
\frac{b_{k+1}}{b_{k}}=\frac{|\alpha-k|}{k+1}
$$

Hence

$$
\lim _{k \rightarrow \infty} \frac{b_{k+1}}{b_{k}}=\lim _{k \rightarrow \infty} \frac{|\alpha-k|}{k+1}=1
$$

Therefore, the radius of convergence for the binomial series is 1 . In particular, the series converges absolutely on ($-1,1$).

Remark: Is
$(1+x)^{\alpha}=1+\sum_{k=1}^{\infty} \frac{\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-k+1)}{k!} x^{k}=\sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k} ?$

Binomial Series

Observation 1:
If $k \geq 1$
$\binom{\alpha}{k+1}(k+1)+\binom{\alpha}{k} k=\frac{\alpha(\alpha-1) \cdots(\alpha-k+1)}{k!}(\alpha-k)$
$+\frac{\alpha(\alpha-1) \cdots(\alpha-k+1)}{k!}(k)$
$=\frac{\alpha(\alpha-1) \cdots(\alpha-k+1)}{k!}(\alpha)$
$=\alpha\binom{\alpha}{k}$

Binomial Series

Observation 2: Next we let

$$
f(x)=1+\sum_{k=1}^{\infty} \frac{\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-k+1)}{k!} x^{k}=\sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k}
$$

for each $\boldsymbol{x} \in(-1,1)$. We claim that

$$
f^{\prime}(x)+x f^{\prime}(x)=\alpha f(x)
$$

for each $\boldsymbol{x} \in(-\mathbf{1}, \mathbf{1})$. Term-by-term differentiation gives us that

$$
\begin{aligned}
f^{\prime}(x)+x f^{\prime}(x) & =\sum_{k=1}^{\infty}\binom{\alpha}{k} k x^{k-1}+\sum_{k=1}^{\infty}\binom{\alpha}{k} k x^{k} \\
& =\binom{\alpha}{1}+\sum_{k=2}^{\infty}\binom{\alpha}{k} k x^{k-1}+\sum_{k=1}^{\infty}\binom{\alpha}{k} k x^{k} \\
& =\alpha+\sum_{k=1}^{\infty}\binom{\alpha}{k+1}(k+1) x^{k}+\sum_{k=1}^{\infty}\binom{\alpha}{k} k x^{k} \\
& =\alpha+\sum_{k=1}^{\infty}\left(\binom{\alpha}{k+1}(k+1)+\binom{\alpha}{k} k\right) x^{k}
\end{aligned}
$$

Binomial Series

Observation 2 (continued):
If $k \geq 1$ we have

$$
\binom{\alpha}{k+1}(k+1)+\binom{\alpha}{k} k=\alpha\binom{\alpha}{k}
$$

It follows that

$$
\begin{aligned}
f^{\prime}(x)+x f^{\prime}(x) & =\alpha+\alpha \sum_{k=1}^{\infty}\binom{\alpha}{k} x^{k} \\
& =\alpha \sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k} \\
& =\alpha f(x)
\end{aligned}
$$

as claimed.

Binomial Series

Observation 3: If

$$
g(x)=\frac{f(x)}{(1+x)^{\alpha}}
$$

then g is differentiable on $(-1,1)$ and since $\alpha f(x)=(1+x) f^{\prime}(x)$,

$$
\begin{aligned}
g^{\prime}(x) & =\frac{f^{\prime}(x)(1+x)^{\alpha}-\alpha f(x)(1+x)^{\alpha-1}}{(1+x)^{2 \alpha}} \\
& =\frac{f^{\prime}(x)(1+x)^{\alpha}-(1+x) f^{\prime}(x)(1+x)^{\alpha-1}}{(1+x)^{2 \alpha}} \\
& =\frac{f^{\prime}(x)(1+x)^{\alpha}-f^{\prime}(x)(1+x)^{\alpha}}{(1+x)^{2 \alpha}} \\
& =0
\end{aligned}
$$

Since $\boldsymbol{g}^{\prime}(\boldsymbol{x})=\mathbf{0}$ for all $\boldsymbol{x} \in(-\mathbf{1}, \mathbf{1}), \boldsymbol{g}(\boldsymbol{x})$ is constant on this interval. However,

$$
g(0)=f(0)=1
$$

Therefore, $\boldsymbol{g}(\boldsymbol{x})=1$ for all $\boldsymbol{x} \in(-\mathbf{1}, \mathbf{1})$. It follows that

$$
f(x)=(1+x)^{\alpha}
$$

Generalized Binomial Theorem

Theorem: [Generalized Binomial Theorem]
Let $\alpha \in \mathbb{R}$. Then for each $x \in(-1,1)$ we have that
$(1+x)^{\alpha}=1+\sum_{k=1}^{\infty} \frac{\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-k+1)}{k!} x^{k}=\sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k}$

Binomial Series

Example: Use the Generalized Binomial Theorem to find a power series representation for $(1+x)^{-2}$.

Note: By the Generalized Binomial Theorem we have

$$
(1+x)^{-2}=\sum_{k=0}^{\infty}\binom{-2}{k} x^{k}
$$

We have that for $\boldsymbol{k} \geq \mathbf{1}$

$$
\binom{-2}{k}=\frac{(-2)(-2-1) \cdots(-2-k+1)}{k!}=(-1)^{k}(k+1)
$$

and

$$
\binom{-2}{0}=1=(-1)^{0}(0+1)
$$

Therefore,

$$
\begin{aligned}
(1+x)^{-2} & =\sum_{k=0}^{\infty}(-1)^{k}(k+1) x^{k} \\
& =\sum_{k=1}^{\infty}(-1)^{k-1} k x^{k-1}
\end{aligned}
$$

