Created by

Barbara Forrest and Brian Forrest

#### **Problem:**

Can infinitely many tasks be performed in a finite amount of time?

# **The Paradox of Achilles**



#### **Paradox of Achilles**

- Achilles races a tortoise who is given a head start.
- Achilles reaches the point where the tortoise began, but the tortoise has moved ahead to a new point.
- Achilles reaches the new point. Again, the tortoise has moved ahead.
- Achilles reaches the next point, and again the tortoise has moved ahead.
- And so on ....
- Conclusion: Achilles can never catch the tortoise!!!

# **Resolving The Paradox of Achilles**



#### **Resolving the Paradox**

We call each time Achilles moves to where the tortoise was a *stage*.

- ► d<sub>1</sub> = distance Achilles traveled in stage 1 ⇒ t<sub>1</sub> = time to complete stage 1
- ► d<sub>2</sub> = distance Achilles traveled in stage 2 ⇒ t<sub>2</sub> = time to complete stage 2
- ▶  $d_n = \text{distance Achilles traveled in stage n} \Rightarrow t_n = \text{time to complete stage n}$

Time to catch the Tortoise  $= t_1 + t_2 + \dots + t_n + \dots$  $= \infty$ ?

#### **Problem:**

Can we add infinitely many numbers at the same time?

More precisely, given a sequence  $\{a_n\}$ , we can form the *formal sum* 

$$a_1 + a_2 + a_3 + \dots = \sum_{n=1}^{\infty} a_n$$

which is called a series?

#### **Question:**

What does this formal sum represent? Does it have a value?

#### Example: What is













 $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} +$ 



$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{16}$$



$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} +$$









# $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \frac{1}{256} +$









= 1?





Sum of Areas

**Total Area Covered** 

 $1 - \frac{1}{2}$ 







 $\frac{1}{2} + \frac{1}{4}$ 





Sum of Areas

**Total Area Covered** 

 $\frac{1}{2} + \frac{1}{4} + \frac{1}{8}$ 

 $1 - \frac{1}{8}$ 



#### Sum of Areas

**Total Area Covered** 

 $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16}$ 

$$1 - \frac{1}{16}$$



Sum of Areas

**Total Area Covered** 

 $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32}$ 

 $1 - \frac{1}{32}$ 



#### Sum of Areas

**Total Area Covered** 

 $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64}$ 

 $1 - \frac{1}{64}$ 



#### Sum of Areas

**Total Area Covered** 

 $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128}$ 

$$1 - \frac{1}{128}$$







 $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128}$ 

 $+\frac{1}{256}$ 

$$1 - \frac{1}{256}$$















#### **Definition:** [Series]

Given a sequence  $\{a_n\}$ , the *formal* sum

$$a_1 + a_2 + a_3 + a_4 + \dots + a_n + \dots$$

is called a *series*. (The series is called *formal* because we have not yet given it a meaning numerically.)

The  $a_n$ 's are called the *terms* of the series. For each term  $a_n$ , the number n is called the *index* of the term.

We denote the series by

$$\sum_{n=1}^{\infty} a_n.$$

### **Convergent/Divergent Series**

#### **Definition:** [Convergent Series]

Given a sequence  $\{a_n\} = \{a_1, a_2, a_3, \ldots\}$ , we define the *k*th partial sum  $S_k$  of the series  $\sum_{n=1}^{\infty} a_n$  by

$$S_k = a_1 + a_2 + \dots + a_k = \sum_{n=1}^{\kappa} a_n.$$

We say that the series  $\sum_{n=1}^{\infty} a_n$  converges if the sequence of partial sums  $\{S_k\}$  converges. In this case, we write

$$\sum_{n=1}^{\infty}a_n=\lim_{k
ightarrow\infty}S_k$$

Otherwise, we say that the series *diverges* and the sum has no defined value.

#### **Example:**

Suppose  $a_n = \frac{1}{2^n}$ . We know that

$$S_k = \sum_{n=1}^k rac{1}{2^n} = 1 - rac{1}{2^k} o 1.$$

Hence,  $\sum\limits_{n=1}^{\infty} rac{1}{2^n}$  converges with

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = 1.$$

# Why Use Limits?

Question: Why use limits?

Suppose  $a_n = (-1)^{n+1}$ . Then the formal sum looks like

$$a_1 + a_2 + a_3 + \dots = 1 + (-1) + 1 + (-1) + 1 + (-1) + \dots$$

We could parenthesize the formal sum as follows:

$$[1 + (-1)] + [1 + (-1)] + [1 + (-1)] + \dots = 0 + 0 + 0 + \dots = 0.$$

Alternatively, we could parenthesize the formal sum as:

 $1 + [(-1)+1] + [(-1)+1] + [(-1)+1] + \dots = 1 + 0 + 0 + 0 + \dots = 1.$ 

Our result is ambiguous; the "sum" changes if we change the way we parenthesize the terms!

# Why Use Limits?

#### **Observe:**

$$S_{1} = 1$$

$$S_{2} = 1 - 1 = 0$$

$$S_{3} = 1 - 1 + 1 = 1$$

$$S_{4} = 1 - 1 + 1 - 1 = 0$$

1

We get

$$S_k = 1 + (-1) + 1 + \dots + (-1)^{k+1} = \begin{cases} 1 & \text{if } k \text{ is odd,} \\ 0 & \text{if } k \text{ is even.} \end{cases}$$

Thus,  $\{S_k\} = \{1, 0, 1, 0, 1, 0, \cdots\}$  diverges.

C

# Example

#### Example: Determine if the series

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$$

converges or diverges.

Solution: Observe that

$$a_n = \frac{1}{n^2 + n} = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

so the series becomes

$$\sum_{n=1}^{\infty} \left( \frac{1}{n} - \frac{1}{n+1} \right).$$

We have

$$S_{k} = (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{4}) + \dots + (\frac{1}{k} - \frac{1}{k+1})$$
  
=  $1 - (\frac{1}{2} - \frac{1}{2}) - (\frac{1}{3} - \frac{1}{3}) - (\frac{1}{4} - \frac{1}{4}) - \dots - (\frac{1}{k} - \frac{1}{k}) - \frac{1}{k+1}$   
=  $1 - 0 - 0 - 0 - \dots - 0 - \frac{1}{k+1} = 1 - \frac{1}{k+1} \to 1$