The Integral Test Part III: Estimations and Errors

Created by

Barbara Forrest and Brian Forrest

Integral Test

Theorem: [The Integral Test]

Assume that

$$
\begin{aligned}
& f \text { is continuous on }[1, \infty), \\
& f(x)>0 \text { on }[1, \infty) \text {, } \\
& f \text { is decreasing on }[1, \infty) \text {, and } \\
& a_{k}=f(k) .
\end{aligned}
$$

Then

1) If $S_{n}=\sum_{k=1}^{n} a_{k}$, then for all $n \in \mathbb{N}$,

$$
\int_{1}^{n+1} f(x) d x \leq S_{n} \leq a_{1}+\int_{1}^{n} f(x) d x
$$

2) $\sum_{k=1}^{\infty} a_{k}$ converges if and only if $\int_{1}^{\infty} f(x) d x$ converges.
3) If $\sum_{k=1}^{\infty} a_{k}$ converges, with $S=\sum_{k=1}^{\infty} a_{k}$, then

$$
\begin{gathered}
\int_{1}^{\infty} f(x) d x \leq \sum_{k=1}^{\infty} a_{k} \leq a_{1}+\int_{1}^{\infty} f(x) d x \\
\int_{n+1}^{\infty} f(x) d x \leq S-S_{n} \leq \int_{n}^{\infty} f(x) d x
\end{gathered}
$$

and

Harmonic Series

Example: Show that

$$
\ln (n+1) \leq \frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \leq 1+\ln (n)
$$

for each $\boldsymbol{n} \in \mathbb{N}$.
Let $f(x)=\frac{1}{x}, a_{k}=f(k)$ and $S_{n}=\sum_{k=1}^{n} \frac{1}{k}=\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{n}$, then by the
Integral Test we have

$$
\int_{1}^{n+1} \frac{1}{x} d x \leq S_{n} \leq a_{1}+\int_{1}^{n} \frac{1}{x} d x
$$

We also know that

$$
\int_{1}^{n+1} \frac{1}{x} d x=\ln (n+1)-\ln (1)=\ln (n+1)
$$

and

$$
\int_{1}^{n} \frac{1}{x} d x=\ln (n)-\ln (1)=\ln (n)
$$

Since $a_{1}=\frac{1}{1}=1$, we get

$$
\ln (n+1) \leq \frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \leq 1+\ln (n)
$$

for each $\boldsymbol{n} \in \mathbb{N}$.

Harmonic Series

Problem: We know that $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges to ∞. How large must n be so that

$$
\sum_{k=1}^{n} \frac{1}{k}=\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{n}>100 ?
$$

We know that

$$
\ln (n+1) \leq \frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \leq 1+\ln (n)
$$

so we can choose n large enough so that

$$
\ln (n+1)>100
$$

This would mean that

$$
n+1>e^{100} \Rightarrow n>e^{100}-1
$$

Question: Could a modern computer add up enough terms in the series one at a time to reach 100 ?

$$
e^{100} \cong 2.7 \times 10^{43}
$$

More Examples

Example: The p-Series Test shows that the series $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$ converges. Let

$$
S_{k}=\sum_{n=1}^{k} \frac{1}{n^{4}} \quad \text { and } \quad S=\sum_{n=1}^{\infty} \frac{1}{n^{4}}
$$

Estimate the error in using the first 100 terms in the series to approximate \boldsymbol{S}. That is, estimate $\left|\boldsymbol{S}-\boldsymbol{S}_{\mathbf{1 0 0}}\right|$.
Since all the terms are positive we have that $\left|S-S_{100}\right|=S-S_{100}$. and from the Integral Test we get that

$$
\int_{101}^{\infty} \frac{1}{x^{4}} d x \leq S-S_{100} \leq \int_{100}^{\infty} \frac{1}{x^{4}} d x
$$

For any $m \in \mathbb{N}$, we have that

$$
\begin{aligned}
\int_{m}^{\infty} \frac{1}{x^{4}} d x & =\lim _{b \rightarrow \infty} \int_{m}^{b} \frac{1}{x^{4}} d x \\
& =\lim _{b \rightarrow \infty}-\left.\frac{1}{3 x^{3}}\right|_{m} ^{b} \\
& =\lim _{b \rightarrow \infty} \frac{1}{3 m^{3}}-\frac{1}{3 b^{3}}=\frac{1}{3 m^{3}}
\end{aligned}
$$

More Examples

Example Cont'd: Letting $m=101$ and $m=100$ respectively tells us that

$$
\frac{1}{3(101)^{3}} \leq S-S_{100} \leq \frac{1}{3(100)^{3}}
$$

or

$$
3.2353 \times 10^{-7} \leq S-S_{100} \leq 3.3333 \times 10^{-7}
$$

Calculating S_{100} gives $S_{100}=\mathbf{1 . 0 8 2 3 2 2 9 0 5}$ up to 9 decimal places and hence

$$
1.082323229 \leq S \leq 1.082323238
$$

In fact, it is actually known that

$$
S=\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}=1.082323234
$$

which does indeed lie within our range.

