Arithmetic of Series

Created by
Barbara Forrest and Brian Forrest

Arithmetic of Series

Question: Assume that $\sum_{n=1}^{\infty} a_{n}$ converges, what can we say about the series $\sum_{\substack{n=1 \\ \text { If }}}^{\infty} 2 \cdot a_{n}$?

$$
S_{k}=\sum_{n=1}^{k} a_{n} \quad \text { and } \quad T_{k}=\sum_{n=1}^{k} 2 \cdot a_{n}
$$

then

$$
T_{k}=\sum_{n=1}^{k} 2 \cdot a_{n}=2 \cdot \sum_{n=1}^{k} a_{n}=2 \cdot S_{k}
$$

Since $\sum_{n=1}^{\infty} a_{n}$ converges, $\lim _{k \rightarrow \infty} S_{k}$ exists. Let

$$
\lim _{k \rightarrow \infty} S_{k}=\sum_{n=1}^{\infty} a_{n}=S
$$

Then

$$
\lim _{k \rightarrow \infty} T_{k}=\lim _{k \rightarrow \infty} 2 \cdot S_{k}=2 \cdot \lim _{k \rightarrow \infty} S_{k}=2 \cdot S
$$

Therefore, $\sum_{n=1}^{\infty} 2 \cdot a_{n}$ also converges and

$$
\sum_{n=1}^{\infty} 2 \cdot a_{n}=2 \cdot \sum_{n=1}^{\infty} a_{n}
$$

Arithmetic of Series

Theorem: [Arithmetic Rules for Series I]
Assume that $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ both converge.

1. The series $\sum_{n=1}^{\infty} c a_{n}$ converges for every $c \in \mathbb{R}$ and

$$
\sum_{n=1}^{\infty} c a_{n}=c \sum_{n=1}^{\infty} a_{n}
$$

2. The series $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ converges and

$$
\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n} .
$$

Arithmetic of Series

Remark: Given a series $\sum_{n=1}^{\infty} a_{n}$ and $j \in \mathbb{N}$, let

$$
\sum_{n=j}^{\infty} a_{n}=a_{j}+a_{j+1}+a_{j+2}+a_{j+3}+\cdots
$$

We say that $\sum_{n=j}^{\infty} a_{n}$ converges if

$$
\lim _{k \rightarrow \infty} T_{k}
$$

exists, where

$$
T_{k}=\sum_{n=j}^{j+k-1} a_{n}=a_{j}+a_{j+1}+a_{j+2}+a_{j+3}+\cdots+a_{j+k-1}
$$

Arithmetic of Series

Theorem: [Arithmetic Rules for Series II]

1. If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=j}^{\infty} a_{n}$ also converges for each j.
2. If $\sum_{n=j}^{\infty} a_{n}$ converges for some j, then $\sum_{n=1}^{\infty} a_{n}$ converges.

In either of the above two cases,

$$
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+\cdots+a_{j-1}+\sum_{n=j}^{\infty} a_{n}
$$

Important Observation: If we have a sequence

$$
a_{1}, a_{2}, a_{3}, \cdots, a_{n}, \cdots
$$

and we change the first $j-1$ terms to make a new sequence

$$
b_{1}, b_{2}, b_{3}, \cdots, b_{n}, \cdots
$$

where $b_{n}=a_{n}$ and if $n \geq j$. Then the series $\sum_{n=j}^{\infty} a_{n}$ and $\sum_{n=j}^{\infty} b_{n}$ are identical.
Hence either both $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converge or they both diverge!!!

Bouncing Ball

Problem: A ball is launched straight up from the ground to a height of 30 m . When the ball returns to the ground it will bounce to a height that is exactly $\frac{1}{3}$ of its previous height. Assuming that the ball continues to bounce each time it returns to the ground, how far does the ball travel before coming to rest?

Solution:

1. Prior to returning to the ground for the first time, the ball travels 30 m on its way up and then 30 m down for a total of $2(30)=60 \mathrm{~m}$.
2. On the first bounce, the ball will travel upwards $\frac{30}{3} \mathrm{~m}$ and down again the same distance for a total of $2\left(\frac{30}{3}\right) \mathrm{m}$.
3. On the second bounce, the ball will again travel upwards one third the distance it traveled on the first bounce or

$$
\frac{1}{3}\left(\frac{30}{3}\right)=\left(\frac{30}{3^{2}}\right) m
$$

With the downward trip, the second bounce covers a distance of $2 \frac{30}{3^{2}} \mathrm{~m}$.

Bouncing Ball

4. On the n-th bounce, the ball will travel a distance of $2\left(\frac{30}{3^{n}}\right) m$. The total distance \boldsymbol{D} the ball travels will be the sum of each of these distances.

Bouncing Ball

Bouncing Ball

4. On the n-th bounce, the ball will travel a distance of $2\left(\frac{30}{3^{n}}\right) m$. The total distance D the ball travels will be the sum of each of these distances.

Therefore,

$$
\begin{aligned}
D & =2(30)+2\left(\frac{30}{3}\right)+2\left(\frac{30}{3^{2}}\right)+2\left(\frac{30}{3^{3}}\right)+\cdots+2\left(\frac{30}{3^{n}}\right)+\cdots \\
& =2(30)\left[1+\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\cdots+\frac{1}{3^{n}}+\cdots\right] \\
& =60 \sum_{n=0}^{\infty}\left(\frac{1}{3}\right)^{n} \\
& =\frac{60}{1-\frac{1}{3}} \\
& =90 \text { meters. }
\end{aligned}
$$

Question: How long does it take the ball to return to rest?

