Alternating Series Test Part II: The AST and Error Estimation

Created by
Barbara Forrest and Brian Forrest

Alternating Series

Recall: If $a_{n}=\frac{1}{n}$, then
i) $a_{n}>0$
ii) $a_{n+1}<a_{n}$
iii) $\lim _{n \rightarrow \infty} a_{n}=0$

Using these properties we showed that the Alternating Series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}=1-\frac{1}{2}+\frac{1}{3}-\cdots+(-1)^{n+1} \frac{1}{n}+\cdots
$$

converged. Moreover, if

$$
S_{k}=\sum_{n=1}^{k}(-1)^{n+1} \frac{1}{n} \text { and } S=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}
$$

then

$$
\left|S-S_{k}\right|<a_{k+1}=\frac{1}{k+1}
$$

Alternating Series

Theorem: [Alternate Series Test]

1) $a_{n}>0$ for all $n \in \mathbb{N}$,
2) $a_{n+1}<a_{n}$ for all $n \in \mathbb{N}$,
3) $\lim _{n \rightarrow \infty} a_{n}=0$.

Then the series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}
$$

converges.
Moreover, if $S_{k}=\sum_{n=1}^{k}(-1)^{n+1} a_{n}$ and $S=\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$, then

$$
\left|S_{k}-S\right|<a_{k+1} .
$$

Alternating Series

We get

1) $\left\{S_{2 k-1}\right\}$ is decreasing and bounded below by 0 $\Rightarrow\left\{S_{2 k-1}\right\} \rightarrow L$.
2) $\left\{S_{2 k}\right\}$ is increasing and bounded above by $a_{1} \Rightarrow\left\{S_{2 k}\right\} \rightarrow M$.
3) $\lim _{k \rightarrow \infty}\left|S_{2 k-1}-S_{2 k}\right|=\lim _{k \rightarrow \infty} a_{2 k}=0 \Rightarrow L=M=S$.

Finally, since S is between S_{k} and S_{k+1} for each \boldsymbol{k},

$$
\left|S_{k}-S\right|<\left|S_{k}-S_{k+1}\right|=a_{k+1} .
$$

Example:

Example: Show that $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{5}}$ converges to some S and that

$$
\left|\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{5}}-\frac{31}{32}\right|<\frac{1}{100}
$$

Solution: With $a_{n}=\frac{1}{n^{5}}$ it is clear that

1) $\boldsymbol{a}_{n}>0$ for all $n \in \mathbb{N}$,
2) $a_{n+1}<a_{n}$ for all $n \in \mathbb{N}$,
3) $\lim _{n \rightarrow \infty} a_{n}=0$.
so the series converges by the AST.
We know that $\frac{31}{32}=1-\frac{1}{2^{5}}=\sum_{n=1}^{2}(-1)^{n+1} \frac{1}{n^{5}}=S_{2}$. Hence

$$
\left|\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{5}}-\frac{31}{32}\right|=\left|S-S_{2}\right|<a_{3}=\frac{1}{3^{5}}=\frac{1}{243}<\frac{1}{100}
$$

Example:

Example: The Integral Test shows that the series

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{2}}
$$

converges and the AST shows that

$$
\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{n(\ln (n))^{2}}
$$

converges.
Let

$$
T_{k}=\sum_{n=2}^{k} \frac{1}{n(\ln (n))^{2}} \quad \text { and } \quad T=\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{2}}
$$

and let

$$
S_{k}=\sum_{n=2}^{k}(-1)^{n} \frac{1}{n(\ln (n))^{2}} \quad \text { and } \quad S=\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{n(\ln (n))^{2}}
$$

How large must k be so that

$$
\left|T-T_{k}\right|<\frac{1}{100} \text { and }\left|S-S_{k}\right|<\frac{1}{100}
$$

respectively?

Example:

Solution: The Integral Test shows that

$$
\left|T-T_{k}\right|<\int_{k}^{\infty} \frac{1}{x(\ln (x))^{2}} d x=\frac{1}{\ln (k)}
$$

We want

$$
\frac{1}{\ln (k)}<\frac{1}{100} \Rightarrow k>e^{100} \cong 10^{43}
$$

The AST shows that

$$
\left|S-S_{k}\right|<\frac{1}{(k+1)(\ln (k+1))^{2}}
$$

We want

$$
\frac{1}{(k+1)(\ln (k+1))^{2}}<\frac{1}{100} \Rightarrow k \geq 14
$$

