Alternating Series Test Part II: The AST and Error Estimation

Created by

Barbara Forrest and Brian Forrest

Alternating Series

Recall: If $a_n = \frac{1}{n}$, then i) $a_n > 0$ ii) $a_{n+1} < a_n$ iii) $\lim_{n \to \infty} a_n = 0$

Using these properties we showed that the Alternating Series

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \dots + (-1)^{n+1} \frac{1}{n} + \dots$$

converged. Moreover, if

then

$$S_k = \sum_{n=1}^k (-1)^{n+1} \frac{1}{n}$$
 and $S = \sum_{n=1}^\infty (-1)^{n+1} \frac{1}{n}$,

$$|S - S_k| < a_{k+1} = \frac{1}{k+1}$$

Alternating Series

Theorem: [Alternate Series Test]

- 1) $a_n > 0$ for all $n \in \mathbb{N}$,
- 2) $a_{n+1} < a_n$ for all $n \in \mathbb{N}$,
- $3) \lim_{n \to \infty} a_n = 0.$

Then the series

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

converges.

Moreover, if
$$S_k = \sum\limits_{n=1}^k (-1)^{n+1} a_n$$
 and $S = \sum\limits_{n=1}^\infty (-1)^{n+1} a_n$, then $|S_k - S| < a_{k+1}.$

Alternating Series

We get

- 1) $\{S_{2k-1}\}$ is decreasing and bounded below by $0 \Rightarrow \{S_{2k-1}\} \rightarrow L.$
- 2) $\{S_{2k}\}$ is increasing and bounded above by $a_1 \Rightarrow \{S_{2k}\} \rightarrow M$.
- 3) $\lim_{k \to \infty} |S_{2k-1} S_{2k}| = \lim_{k \to \infty} a_{2k} = 0 \Rightarrow L = M = S.$

Finally, since S is between S_k and S_{k+1} for each k,

$$|S_k - S| < |S_k - S_{k+1}| = a_{k+1}.$$

Example:

Example: Show that $\sum\limits_{n=1}^{\infty}(-1)^{n+1}rac{1}{n^5}$ converges to some S and that

$$|\sum_{n=1}^{\infty}(-1)^{n+1}rac{1}{n^5} - rac{31}{32}| < rac{1}{100}.$$

Solution: With $a_n = \frac{1}{n^5}$ it is clear that

- 1) $a_n > 0$ for all $n \in \mathbb{N}$,
- 2) $a_{n+1} < a_n$ for all $n \in \mathbb{N}$,
- 3) $\lim_{n\to\infty}a_n=0.$

so the series converges by the AST.

We know that
$$\frac{31}{32} = 1 - \frac{1}{2^5} = \sum_{n=1}^{2} (-1)^{n+1} \frac{1}{n^5} = S_2$$
. Hence
 $|\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^5} - \frac{31}{32} |= |S - S_2| < a_3 = \frac{1}{3^5} = \frac{1}{243} < \frac{1}{100}.$

Example:

Example: The Integral Test shows that the series

$$\sum_{n=2}^{\infty} rac{1}{n(\ln(n))^2}$$

converges and the AST shows that

$$\sum_{n=2}^{\infty} (-1)^n \frac{1}{n(\ln(n))^2}$$

converges.

Let

$$T_k = \sum_{n=2}^k rac{1}{n(\ln(n))^2}$$
 and $T = \sum_{n=2}^\infty rac{1}{n(\ln(n))^2}$

and let

$$S_k = \sum_{n=2}^k (-1)^n rac{1}{n(\ln(n))^2}$$
 and $S = \sum_{n=2}^\infty (-1)^n rac{1}{n(\ln(n))^2}$

How large must k be so that

$$|T-T_k| < rac{1}{100}$$
 and $|S-S_k| < rac{1}{100}$

respectively?

Example:

Solution: The Integral Test shows that

$$|T - T_k| < \int_k^\infty rac{1}{x(\ln(x))^2}\,dx = rac{1}{\ln(k)}$$

We want

$$\frac{1}{\ln(k)} < \frac{1}{100} \Rightarrow k > e^{100} \cong 10^{43}$$

The AST shows that

$$|S - S_k| < \frac{1}{(k+1)(\ln(k+1))^2}$$

We want

$$\frac{1}{(k+1)(\ln(k+1))^2} < \frac{1}{100} \Rightarrow k \ge 14$$