Alternating Series Test Part I: Introduction

Created by

Barbara Forrest and Brian Forrest

Alternating Series

Recall: The Harmonic Series

$$
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\cdots
$$

diverges.

Question: What can we say about the series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}=1-\frac{1}{2}+\frac{1}{3}-\cdots+(-1)^{n+1} \frac{1}{n}+\cdots ?
$$

This series is called the Alternating Series.

Alternating Series

Let $a_{n}=\frac{1}{n}$ and $S_{k}=\sum_{n=1}^{k}(-1)^{n+1} \frac{1}{n}$.

1) $\left\{S_{2 k-1}\right\}$ is decreasing and bounded below.
2) $\left\{S_{2 k}\right\}$ is increasing and bounded above.

Alternating Series

Claim 1: $\left\{S_{2 k-1}\right\}$ is decreasing and bounded below by 0 .

1) $S_{2 k+1}-S_{2 k-1}=\sum_{n=1}^{2 k+1}(-1)^{n+1} \frac{1}{n}-\sum_{n=1}^{2 k-1}(-1)^{n+1} \frac{1}{n}=$ $-\frac{1}{2 k}+\frac{1}{2 k+1}<0$ so $\left\{S_{2 k-1}\right\}$ is decreasing.
2) $S_{2 k-1}=\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots+\left(\frac{1}{2 k-3}-\frac{1}{2 k-2}\right)+\frac{1}{2 k-1}>0$.

Conclusion: The MCT shows that $\left\{S_{2 k-1}\right\}$ converges.

Alternating Series

Claim 2: $\left\{S_{2 k}\right\}$ is increasing and bounded above by 1 .

1) $S_{2 k+2}-S_{2 k}=\sum_{n=1}^{2 k+2}(-1)^{n+1} \frac{1}{n}-\sum_{n=1}^{2 k}(-1)^{n+1} \frac{1}{n}=$

$$
\frac{1}{2 k+1}-\frac{1}{2 k+2}>0 \text { so }\left\{S_{2 k}\right\} \text { is increasing. }
$$

2) $S_{2 k}=1+\left(-\frac{1}{2}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{5}\right)+\cdots+\left(-\frac{1}{2 k-2}+\frac{1}{2 k-1}\right)-\frac{1}{2 k}<1$.

Conclusion: The MCT shows that $\left\{S_{2 k}\right\}$ converges.
Note:

$$
\left|S_{2 k}-S_{2 k-1}\right|=\frac{1}{2 k} \rightarrow 0
$$

Therefore,

$$
\lim _{k \rightarrow \infty} S_{2 k-1}=S=\lim _{k \rightarrow \infty} S_{2 k}
$$

and $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}$ converges (to $\left.\ln (2)\right)$.

Alternating Series

Theorem: [Alternate Series Test]

1) $a_{n}>0$ for all $n \in \mathbb{N}$,
2) $a_{n+1}<a_{n}$ for all $n \in \mathbb{N}$,
3) $\lim _{n \rightarrow \infty} a_{n}=0$.

Then the series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}
$$

converges.
Moreover, if $S_{k}=\sum_{n=1}^{k}(-1)^{n+1} a_{n}$ and $S=\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$, then

$$
\left|S_{k}-S\right|<a_{k+1} .
$$

Alternating Series

We get

1) $\left\{S_{2 k-1}\right\}$ is decreasing and bounded below by 0 $\Rightarrow\left\{S_{2 k-1}\right\} \rightarrow L$.
2) $\left\{S_{2 k}\right\}$ is increasing and bounded above by $a_{1} \Rightarrow\left\{S_{2 k}\right\} \rightarrow M$.
3) $\lim _{k \rightarrow \infty}\left|S_{2 k-1}-S_{2 k}\right|=\lim _{k \rightarrow \infty} a_{2 k}=0 \Rightarrow L=M=S$.

Finally, since S is between S_{k} and S_{k+1} for each k,

$$
\left|S_{k}-S\right|<\left|S_{k}-S_{k+1}\right|=a_{k+1} .
$$

Example:

Example: Show that $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{5}}$ converges to some S and that

$$
\left|\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{5}}-\frac{31}{32}\right|<\frac{1}{100}
$$

Solution: With $a_{n}=\frac{1}{n^{5}}$ it is clear that

1) $\boldsymbol{a}_{n}>0$ for all $n \in \mathbb{N}$,
2) $a_{n+1}<a_{n}$ for all $n \in \mathbb{N}$,
3) $\lim _{n \rightarrow \infty} a_{n}=0$.
so the series converges by the AST.
We know that $\frac{31}{32}=1-\frac{1}{2^{5}}=\sum_{n=1}^{2}(-1)^{n+1} \frac{1}{n^{5}}=S_{2}$. Hence

$$
\left|\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{5}}-\frac{31}{32}\right|=\left|S-S_{2}\right|<a_{3}=\frac{1}{3^{5}}=\frac{1}{243}<\frac{1}{100}
$$

