Separable Differential Equations

Created by

Barbara Forrest and Brian Forrest

Separable Differential Equations

Question: How do we solve the differential equation

$$
y^{\prime}=x\left(y^{2}+1\right) ?
$$

Note: We saw that the function

$$
y=\tan \left(\frac{x^{2}}{2}\right)
$$

satisfies the above equation but how did we discover this?
We can divide by $y^{2}+1$ to get

$$
\frac{y^{\prime}}{y^{2}+1}=x
$$

Integrating both sides with respect to x gives

$$
\int \frac{y^{\prime}}{y^{2}+1} d x=\int x d x
$$

Separable Differential Equations

Question Cont'd: How do we solve the differential equation

$$
y^{\prime}=x\left(y^{2}+1\right) ?
$$

Since $\boldsymbol{y}=\boldsymbol{y}(\boldsymbol{x})$, we can apply the Change of Variables theorem get that

$$
\begin{aligned}
\int \frac{y^{\prime}}{y^{2}+1} d x & =\int \frac{1}{(y(x))^{2}+1} y^{\prime}(x) d x \\
& =\int \frac{1}{y^{2}+1} d y \\
& =\arctan (y)
\end{aligned}
$$

Hence

$$
\arctan (y)=\int x d x=\frac{x^{2}}{2}+C
$$

Solving for \boldsymbol{y} in terms of \boldsymbol{x} gives us

$$
y=\tan \left(\frac{x^{2}}{2}+C\right)
$$

Separable Differential Equations

Definition: [Separable Differential Equation]

We say that a first order differentiable equation is separable if there exists functions $f=f(x)$ and $g=g(y)$ such that the equation can be written in the form

$$
y^{\prime}=f(x) g(y)
$$

Example:

1. $y^{\prime}=x\left(y^{2}+1\right)$ is separable. In this case,

$$
f(x)=x \quad \text { and } g(y)=y^{2}+1
$$

2. $y^{\prime}=y$ is separable. In this case,

$$
f(x)=1 \text { and } g(y)=y
$$

3. $y^{\prime}=\cos (x y)$ is not separable.

Solving Separable Differential Equations

Question: How do we solve a separable differential equation

$$
y^{\prime}=f(x) g(y)
$$

Step 1: Finding all constant solutions.
Suppose that $y_{0} \in \mathbb{R}$ is such that

$$
g\left(y_{0}\right)=0
$$

Let

$$
\phi(x)=y_{0}
$$

for all $x \in \mathbb{R}$. Then

$$
\phi^{\prime}(x)=0=f(x) g\left(y_{0}\right)=f(x) g(\phi(x))
$$

for each $x \in \mathbb{R}$.

Solving Separable Differential Equations

Definition: [Constant Solutions to Separable DE's]

If

$$
y^{\prime}=f(x) g(y)
$$

is a separable differential equation and if $y_{0} \in \mathbb{R}$ is such that $g\left(y_{0}\right)=0$, then

$$
\phi(x)=y_{0}
$$

is called a constant or equilibrium solution to the differential equation.

Solving Separable Differential Equations

Example: Find all constant solutions to the equation

$$
y^{\prime}=y(1-y)
$$

Solution : We have

$$
f(x)=1 \text { and } g(y)=y(1-y)
$$

Therefore, $g\left(y_{0}\right)=0$ if

$$
y_{0}=0 \quad \text { or } \quad y_{0}=1
$$

The constant solutions are

$$
\varphi(x)=0 \text { or } \psi(x)=1
$$

for all $x \in \mathbb{R}$.
Note: The separable differential equation

$$
y^{\prime}=x\left(y^{2}+1\right)
$$

has no constant solutions since $\boldsymbol{y}^{2}+\mathbf{1}>\mathbf{0}$ for all $\boldsymbol{y} \in \mathbb{R}$.

Solving Separable Differential Equations

Step 2: Finding all implicit solutions.

When $\boldsymbol{g}(\boldsymbol{y}) \neq 0$, we can divide by $\boldsymbol{g}(\boldsymbol{y})$ to get

$$
\frac{y^{\prime}}{g(y)}=f(x)
$$

Integrating both sides with respect to \boldsymbol{x} gives

$$
\int \frac{y^{\prime}}{g(y)} d x=\int f(x) d x
$$

Since $\boldsymbol{y}=\boldsymbol{y}(\boldsymbol{x})$, the Change of Variables Theorem gives

$$
\begin{aligned}
\int \frac{y^{\prime}}{g(y)} d x & =\int \frac{1}{g(y(x))} y^{\prime}(x) d x \\
& =\int \frac{1}{g(y)} d y
\end{aligned}
$$

Hence

$$
G(y)=\int \frac{1}{g(y)} d y=\int f(x) d x=F(x)+C
$$

The expression

$$
G(y)=F(x)+C
$$

is called an implicit solution to our equation.

Solving Separable Differential Equations

Step 3: Finding all explicit solutions.
Given the equation

$$
G(y)=\int \frac{1}{g(y)} d y=\int f(x) d x=F(x)+C
$$

our last step is to try and solve the implicit equation

$$
G(y)=F(x)+C
$$

for y in terms of x to get our explicit solutions.

Solving Separable Differential Equations

Example: Find all solutions to the equation

$$
y^{\prime}=(x+1) y
$$

Step 1: Since $g(y)=y$, the only y_{0} such that $g\left(y_{0}\right)=0$ is $y_{0}=0$. Therefore,

$$
y(x)=0
$$

is the only constant solution.
Step 2: If $y \neq 0$, we have

$$
\int \frac{1}{y} d y=\int(x+1) d x
$$

so

$$
\ln (|y|)=\frac{x^{2}}{2}+x+C
$$

where C is an arbitrary constant.

Solving Separable Differential Equations

Step 3: Since

$$
\ln (|y|)=\frac{x^{2}}{2}+x+C
$$

we get

$$
\begin{aligned}
|y| & =e^{\ln (|y|)} \\
& =e^{\frac{x^{2}}{2}+x+C} \\
& =e^{C} e^{\frac{x^{2}}{2}+x} \\
& =C_{1} e^{\frac{x^{2}}{2}+x}
\end{aligned}
$$

where $C_{1}=e^{C}>0$. However,

$$
|y|=C_{1} e^{\frac{x^{2}}{2}+x}
$$

means that

$$
\begin{aligned}
y & = \pm C_{1} e^{\frac{x^{2}}{2}+x} \\
& =C_{2} e^{\frac{x^{2}}{2}+x}
\end{aligned}
$$

where $C_{2}= \pm C_{1} \neq 0$.

Solving Separable Differential Equations

Remark: The solutions to the equation

$$
y^{\prime}=(x+1) y
$$

are either the constant solution

$$
y(x)=0
$$

or the solutions of the form

$$
y=C e^{\frac{x^{2}}{2}+x}
$$

where $C \neq 0$.
Observe that

$$
y=0=0 \cdot e^{\frac{x^{2}}{2}+x}
$$

so in this example all solutions are of the form

$$
y=C e^{\frac{x^{2}}{2}+x}
$$

where $C \in \mathbb{R}$.

Solving Separable Differential Equations

Remark: It may not be immediately obvious that an differential equation is separable. For example

$$
y^{\prime}=x y+y
$$

does not immediately look separable.
However the equation can be rewritten as

$$
y^{\prime}=(x+1) y
$$

so it is separable with

$$
f(x)=x+1 \text { and } g(y)=y
$$

Solving Separable Differential Equations

Solving the separable differential equation

$$
y^{\prime}=f(x) g(y)
$$

Step 1: Determine whether the DE is separable. You may have to factor the DE to identify $f(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{y})$.

Step 2: Determine the constant solution(s) by finding all the values y_{0} such that $\boldsymbol{g}\left(\boldsymbol{y}_{0}\right)=\mathbf{0}$. For each such $\boldsymbol{y}_{\mathbf{0}}$, the constant function

$$
y=y(x)=y_{0}
$$

is a solution.
Step 3: If $\boldsymbol{g}(\boldsymbol{y}) \neq 0$, integrate both sides of the following equation

$$
\int \frac{1}{g(y)} d y=\int f(x) d x
$$

to solve the differential equation implicitly.
Step 4: Solve the implicit equation from Step 3 explicitly for \boldsymbol{y} in terms of \boldsymbol{x}.
Step 5: [Optional] Check your solution by differentiating y to determine if this derivative does satisfy the original equation.

