Newton's Law of Cooling

Created by

Barbara Forrest and Brian Forrest

Newton's Law of Cooling

Newton's Law of Cooling: Newton's law of cooling states that an object will cool (or warm) at a rate that is proportional to the difference between the temperature of the object and the ambient temperature T_{a} of its surroundings. Therefore, if we let $\boldsymbol{T}(t)$ denote the temperature of an object at time t, we get that there is a constant k such that

$$
T^{\prime}=k\left(T-T_{a}\right)
$$

Newton's Law of Cooling

Newton's Law of Cooling Cont'd: If we let $D=D(t)=T(t)-T_{a}$, then

$$
D^{\prime}=T^{\prime}=k\left(T-T_{a}\right)=k D
$$

so D satisfies the equation of exponential growth (or decay).
We know that

$$
D=C e^{k t}
$$

and follows that

$$
T(t)=C e^{k t}+T_{a}
$$

where $C=D(0)=T_{0}-T_{a}$ and $T_{0}=T(0)$.
Therefore,

$$
T(t)=\left(T_{0}-T_{a}\right) e^{k t}+T_{a} .
$$

Newton's Law of Cooling

Newton's Law of Cooling Cont'd: With

$$
T(t)=\left(T_{0}-T_{a}\right) e^{k t}+T_{a}
$$

there are three cases:
Case 1: $T_{0}>T_{a}$
Since $T(t)$ is decreasing

$$
T^{\prime}=k\left(T-T_{a}\right)<0
$$

However, $\boldsymbol{T}>\boldsymbol{T}_{a}$, so that $k<0$.

Newton's Law of Cooling

Newton's Law of Cooling Cont'd:
Case 2: $T_{0}<T_{a}$
Since $T(t)$ is increasing

$$
T^{\prime}=k\left(T-T_{a}\right)>0 .
$$

However, $\boldsymbol{T}<\boldsymbol{T}_{a}$, so that $k<\mathbf{0}$.
Case 3: $T_{0}=T_{a}$
In this case

$$
T(t)=T_{a}
$$

Newton's Law of Cooling

Newton's Law of Cooling

$$
T(t)=\left(T_{0}-T_{a}\right) e^{k t}+T_{a}
$$

Newton's Law of Cooling

Problem: A cup of boiling water at $100^{\circ} C$ is allowed to cool in a room where the ambient temperature is $20^{\circ} \mathrm{C}$. If after 10 minutes the water has cooled to $70^{\circ} \mathrm{C}$, what will be the temperature after the water has cooled for $\mathbf{2 5}$ minutes.

Solution: We have $T_{0}=100$ and the ambient temperature is $T_{a}=20$ so that

$$
\begin{aligned}
T(t) & =\left(T_{0}-T_{a}\right) e^{k t}+T_{a} \\
& =(100-20) e^{k t}+20 \\
& =80 e^{k t}+20
\end{aligned}
$$

To find \boldsymbol{k} observe that

$$
70=T(10)=80 e^{k(10)}+20
$$

and hence

$$
50=80 e^{10 k} \Rightarrow k=\frac{\ln \left(\frac{5}{8}\right)}{10}
$$

Finally

$$
T(25)=80 e^{\frac{\ln \left(\frac{5}{8}\right)}{10}(25)}+20 \cong 44.71
$$

