Logistic Growth

Created by

Barbara Forrest and Brian Forrest

Logistic Growth

Remark: A population with unlimited resources grows at a rate that is proportional to its size. That is

$$
P^{\prime}=k P
$$

If there is a maximum population M that the resources can support then typically

$$
P^{\prime}=k P(M-P)
$$

This population satisfies a logistic growth model and

$$
y^{\prime}=k y(M-y)
$$

is called the logistic equation.

Solving the Logistic Equation

Note: The logistic equation

$$
P^{\prime}=k P(M-P)
$$

is separable with constant solutions $P(t)=0$ and $P(t)=M$.
We have

$$
\int \frac{1}{P(M-P)} d P=\int k d t=k t+C_{1}
$$

and to evaluate

$$
\int \frac{1}{P(M-P)} d P
$$

we use partial fractions.
We get constants \boldsymbol{A} and \boldsymbol{B} are such that

$$
\frac{1}{P(M-P)}=\frac{A}{P}+\frac{B}{M-P}
$$

or

$$
1=A(M-P)+B(P)
$$

Solving the Logistic Equation

With

$$
1=A(M-P)+B(P)
$$

letting $P=0$ gives

$$
1=A(M)
$$

SO

$$
A=\frac{1}{M}
$$

Letting $P=M$, we get

$$
1=B(M)
$$

and again

$$
B=\frac{1}{M} .
$$

Therefore

$$
\frac{1}{P(M-P)}=\frac{1}{M}\left[\frac{1}{P}+\frac{1}{M-P}\right]
$$

Solving the Logistic Equation

It follows that

$$
\begin{aligned}
\int \frac{1}{P(M-P)} d P & =\frac{1}{M}\left[\int \frac{1}{P} d P+\int \frac{1}{M-P} d P\right] \\
& =\frac{1}{M}[\ln (|P|)-\ln (|M-P|)]+C_{2} \\
& =\frac{1}{M} \ln \left(\frac{|P|}{|M-P|}\right)+C_{2}
\end{aligned}
$$

We now have that

$$
\frac{1}{M} \ln \left(\frac{|P(t)|}{|M-P(t)|}\right)+C_{2}=k t+C_{1}
$$

Therefore,

$$
\ln \left(\frac{|P(t)|}{|M-P(t)|}\right)=M k t+C_{3}
$$

where C_{3} is arbitrary.
This shows that

$$
\frac{|P(t)|}{|M-P(t)|}=C e^{M k t}
$$

where $C=e^{C_{3}}>0$.

Solving the Logistic Equation

Case 1: Assume that $0<P(t)<M$. Then

$$
\frac{|P(t)|}{|M-P(t)|}=\frac{P(t)}{M-P(t)}=C e^{M k t}
$$

Solving for $\boldsymbol{P}(t)$ would give

$$
\begin{aligned}
P(t) & =(M-P(t)) C e^{M k t} \\
& =M C e^{M k t}-P(t) C e^{M k t}
\end{aligned}
$$

so that

$$
P(t)+P(t) C e^{M k t}=M C e^{M k t}
$$

We then have

$$
P(t)\left(1+C e^{M k t}\right)=M C e^{M k t}
$$

and finally that

$$
\begin{aligned}
P(t) & =\frac{M C e^{M k t}}{1+C e^{M k t}} \\
& =M \frac{C e^{M k t}}{1+C e^{M k t}}
\end{aligned}
$$

Solving the Logistic Equation

Two Observations:

1) Since $\boldsymbol{C}>0$, the denominator is never 0 so the function $\boldsymbol{P}(t)$ is continuous and

$$
0<\frac{C e^{M k t}}{1+C e^{M k t}}<1
$$

so that

$$
0<P(t)<M
$$

which agrees with our assumption.
2) Since $k>0$, we have that

$$
\begin{aligned}
\lim _{t \rightarrow \infty} P(t) & =\lim _{t \rightarrow \infty} M \frac{C e^{M k t}}{1+C e^{M k t}} \\
& =M \lim _{t \rightarrow \infty} \frac{C e^{M k t}}{1+C e^{M k t}} \\
& =M
\end{aligned}
$$

and

$$
\lim _{t \rightarrow-\infty} P(t)=\lim _{t \rightarrow-\infty} M \frac{C e^{M k t}}{1+C e^{M k t}}=0
$$

Solving the Logistic Equation

If $t=0$, then

$$
P_{0}=P(0)=M \frac{C e^{0}}{1+C e^{0}}=M \frac{C}{1+C}
$$

Solving for C yields

$$
\begin{aligned}
& P_{0}(1+C)=M C \\
& P_{0}+P_{0} C=M C \\
& P_{0}=\left(M-P_{0}\right) C
\end{aligned}
$$

and finally that

$$
C=\frac{P_{0}}{M-P_{0}}
$$

Logistic Growth

Solving the Logistic Equation

Case 2: If $\boldsymbol{P}(0)>M$, then

$$
\frac{|P(t)|}{|M-P(t)|}=-\frac{P(t)}{M-P(t)}=\frac{P(t)}{P(t)-M}=C e^{M k t}
$$

We get that there exists a positive constant C such that

$$
P(t)=M \frac{C e^{M k t}}{C e^{M k t}-1}
$$

Note: This function has a vertical asymptote when the denominator

$$
C e^{M k t}-1=0
$$

Moreover, the function is only positive if

$$
C e^{M k t}>1
$$

or equivalently if

$$
e^{M k t}>\frac{1}{C}
$$

This happens if and only if $t>\frac{\ln \left(\frac{1}{C}\right)}{M k}=t_{0}$.

Solving the Logistic Equation

Solving the Logistic Equation

Note: Since we are looking for a population function and so we require $P(t) \geq 0$, we will only consider values of t which exceed t_{0}. Therefore, the graph of the population function is as above.

Solving the Logistic Equation

Example: A game reserve can support at most 800 elephants. An initial population of 50 elephants is introduced in the park. After 5 years the population has grown to 120 elephants. Assuming that the population satisfies a logistic growth model, how large will the population be 25 years after this introduction?

Let $\boldsymbol{P}(\boldsymbol{t})$ denote the elephant population \boldsymbol{t} years after they are introduced to the park. There are positive constants C and k such that the population of elephants is given by

$$
P(t)=800 \frac{C e^{800 k t}}{1+C e^{800 k t}}
$$

If $P_{0}=P(0)$, then

$$
C=\frac{P_{0}}{M-P_{0}}
$$

Since $P_{0}=P(0)=50$ and $M=800$. Then

$$
C=\frac{50}{800-50}=\frac{50}{750}=\frac{1}{15}
$$

Therefore,

$$
P(t)=800 \frac{\frac{1}{15} e^{800 k t}}{1+\frac{1}{15} e^{800 k t}}
$$

Solving the Logistic Equation

Example Cont'd: To find k, we note that

$$
120=P(5)=800 \frac{\frac{1}{15} e^{800 k(5)}}{1+\frac{1}{15} e^{800 k(5)}}
$$

Hence

$$
\frac{120}{800}=\frac{3}{20}=\frac{\frac{1}{15} e^{800 k(5)}}{1+\frac{1}{15} e^{800 k(5)}}
$$

and thus

$$
\frac{9}{4}=\frac{e^{4000 k}}{1+\frac{1}{15} e^{4000 k}}
$$

We get

$$
\frac{9}{4}\left(1+\frac{1}{15} e^{4000 k}\right)=e^{4000 k}
$$

so

$$
\frac{9}{4}=\frac{17}{20} e^{4000 k}
$$

This means

$$
\frac{45}{17}=e^{4000 k}
$$

and finally that

$$
k=\frac{\ln \left(\frac{45}{17}\right)}{4000}
$$

Solving the Logistic Equation

Example Cont'd: Substituting k back into the population model and evaluating at $t=25$ we get

$$
\begin{aligned}
P(25) & =800 \frac{\frac{1}{15} e^{800 \frac{\ln \left(\frac{45}{17}\right)}{4000}(25)}}{1+\frac{1}{15} e^{800 \frac{\ln \left(\frac{45}{17}\right)}{4000}(25)}} \\
& =800 \frac{\frac{1}{15} e^{5 \ln \left(\frac{45}{17}\right)}}{1+\frac{1}{15} e^{5 \ln \left(\frac{45}{17}\right)}} \\
& =717 \text { elephants }
\end{aligned}
$$

