Linear Differential Equations

Created by

Barbara Forrest and Brian Forrest

Linear Differential Equations

Definition: [Linear Differential Equation]

A first order differential equation is said to be linear if it can be written in the form

$$
y^{\prime}=f(x) y+g(x)
$$

Examples:

1. The separable differential equation

$$
y^{\prime}=3 x(y-1)
$$

may be rewritten as

$$
y^{\prime}=3 x y-3 x
$$

so it is also linear.
2. The differentiable equation

$$
y^{\prime}=x^{2} y^{3}
$$

is not linear since the term y^{3} is of third degree.

Linear Differential Equations

Question: How do we solve the linear differential equation

$$
y^{\prime}=f(x) y+g(x) ?
$$

Solving Linear Differential Equations

The Algorithm: Solve the linear differential equation

$$
y^{\prime}=3 x y-3 x
$$

Step 1: Rewrite the equation as

$$
y^{\prime}-3 x y=-3 x \quad(*)
$$

Step 2: The Integrating Factor
Let $\boldsymbol{I}=\boldsymbol{I}(\boldsymbol{x})$ be a non-zero function and multiply each side of our DE by \boldsymbol{I} to get

$$
I y^{\prime}-3 x I y=-3 x I
$$

We also want $I=I(x)$ to satisfy

$$
\frac{d}{d x}(I y)=I y^{\prime}-3 x I y
$$

From the product Rule we would need

$$
I y^{\prime}+I^{\prime} y=I y^{\prime}-3 x I y \quad(* *)
$$

and hence

$$
I^{\prime}=-3 x I
$$

Solving Linear Differential Equations

Step 2: The Integrating Factor Cont'd

The equation

$$
I^{\prime}=-3 x I
$$

is separable so we get

$$
\ln (|I|)=\int \frac{1}{I} d I=\int-3 x d x
$$

We can choose any function of the form

$$
I=e^{\int-3 x d x} \Rightarrow I(x)=e^{-\frac{3 x^{2}}{2}}
$$

and we get from (**) that

$$
\frac{d}{d x}(I y)=I y^{\prime}+I^{\prime} y=I y^{\prime}-3 x I y=-3 x I(x)
$$

This means that

$$
I y=\int \frac{d}{d x}(I y) d x=\int-3 x I(x) d x=\int-3 x e^{-\frac{3 x^{2}}{2}} d x \quad(* * *)
$$

Solving Linear Differential Equations

Let $u=-\frac{3 x^{2}}{2}$ to get $d u=-3 x d x$ and

$$
\begin{aligned}
\int-3 x e^{-\frac{3 x^{2}}{2}} d x & =\int e^{u} d u \\
& =e^{u}+C \\
& =e^{-\frac{3 x^{2}}{2}}+C
\end{aligned}
$$

Finally since

$$
I y=\int-3 x e^{-\frac{3 x^{2}}{2}} d x \quad(* * *)
$$

we get

$$
y=\frac{e^{-\frac{3 x^{2}}{2}}+C}{I(x)}=\frac{e^{-\frac{3 x^{2}}{2}}+C}{e^{-\frac{3 x^{2}}{2}}}=1+C e^{\frac{3 x^{2}}{2}}
$$

Solving Linear Differential Equations

Note: The function $I=I(x)$ in the previous example is called an integrating factor.

Solving Linear Differential Equations

Solving a First Order Linear DE

Step 1: Determine whether the $D E$ is linear. Write the equation in the form

$$
y^{\prime}-f(x) y=g(x)
$$

and identify $f(x)$ and $g(x)$.
Step 2: Calculate the integrating factor $I(x)$ with $I(x) \neq 0$. Solve for I by using

$$
I=e^{-\int f(x) d x}
$$

Step 3: Since $I(x) \neq 0$, the solution is

$$
y=\frac{\int g(x) I(x) d x}{I(x)}
$$

Step 4: [Optional] Check your solution by differentiating \boldsymbol{y}.

Solving Linear Differential Equations

Theorem: [Solving First Order Linear Differential Equations]

Let f and g be continuous and let

$$
y^{\prime}=f(x) y+g(x)
$$

be a first order linear differential equation. Then the solutions to this equation are of the form

$$
y=\frac{\int g(x) I(x) d x}{I(x)}
$$

where $I(x)=e^{-\int f(x) d x}$.

Solving Linear Differential Equations

Example: Solve the linear differential equation

$$
y^{\prime}=x-y
$$

Solution : Since

$$
f(x)=-1 \quad \text { and } g(x)=x
$$

the integrating factor is

$$
I(x)=e^{-\int(-1) d x}=e^{x}
$$

Therefore

$$
y=\frac{\int g(x) I(x) d x}{I(x)}=\frac{\int x e^{x} d x}{e^{x}}
$$

Integration by parts shows that

$$
\int x e^{x} d x=x e^{x}-e^{x}+C
$$

so

$$
y=\frac{x e^{x}-e^{x}+C}{e^{x}}=x-1+C e^{-x}
$$

