Graphical and Numerical Solutions of DE's

Created by

Barbara Forrest and Brian Forrest

Graphical and Numerical Solutions of DE's

Remark: Most DE's can not be solved explicitly but we can use linear approximation to help us build both graphical and numerical approximations to solutions.

Recall: If f is differentiable at x_{0}, then f can be approximated near x_{0} by its linear approximation

$$
L_{x_{0}}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

and the graph of $L_{x_{0}}$ is the tangent line to the graph of f through the point $\left(x_{0}, f\left(x_{0}\right)\right)$.

Direction Fields

Graphical Solution: The Strategy

- Given a differential equation

$$
y^{\prime}=f(x, y)
$$

if there is a solution ϕ whose graph includes the point $\left(x_{0}, y_{0}\right)$, then the slope of the tangent line to the graph of ϕ through $\left(x_{0}, y_{0}\right)$ is

$$
m=f\left(x_{0}, y_{0}\right)
$$

- We can construct a local graphical approximation to the function ϕ near $\left(x_{0}, y_{0}\right)$ by looking at a short segment of this tangent line.
- A collection of such segments is called a direction field for the differential equation.

Direction Fields

Example: Consider the linear DE

$$
y^{\prime}=x+y
$$

Direction Fields

Direction Field for $y^{\prime}=x+y$

Direction Fields

Direction Fields

Note: $y=-x-1$ is a solution to $y^{\prime}=x+y$ with $y(-1)=0$.

Euler's Method

Euler's Method: This is an algorithm for building a numerical approximation on a closed interval $[a, b]$ to a solution to an initial value problem

$$
y^{\prime}=f(x, y)
$$

with $y(a)=y_{0}$.
Step 1: Determine a partition

$$
P=\left\{a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b\right\}
$$

of $[a, b]$

Euler's Method

Step 2: Assume that ϕ is a solution to $y^{\prime}=f(x, y)$ with $\phi\left(x_{0}\right)=y_{0}$. Then

$$
L_{x_{0}}(x)=y_{0}+f\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)
$$

so we can assume that

$$
\phi(x)=y_{0}+f\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)
$$

on $\left[x_{0}, x_{1}\right]$.

Euler's Method

Step 3: Let

$$
y_{1}=L_{x_{0}}\left(x_{1}\right)=y_{0}+f\left(x_{0}, y_{0}\right)\left(x_{1}-x_{0}\right)
$$

and define

$$
\phi(x)=L_{x_{1}}(x)=y_{1}+f\left(x_{1}, y_{1}\right)\left(x-x_{1}\right)
$$

on $\left[x_{1}, x_{2}\right]$.

Euler's Method

Step 3: Let

$$
y_{2}=L_{x_{1}}\left(x_{2}\right)=y_{1}+f\left(x_{1}, y_{1}\right)\left(x_{2}-x_{1}\right)
$$

and define

$$
\phi(x)=L_{x_{2}}(x)=y_{2}+f\left(x_{2}, y_{2}\right)\left(x-x_{2}\right)
$$

on $\left[x_{2}, x_{3}\right]$ and continue until you reach $x_{n}=b$.

