Volumes of Revolution: Shell Method

Created by

Barbara Forrest and Brian Forrest

Problem: Assume that f and g are continuous on [a, b], with $a \ge 0$ and $f(x) \le g(x)$ on [a, b].

Let W be the region bounded by the graphs of f and g and the lines x = a and x = b.

Find the volume V of the solid obtained by rotating the region W around the *y*-axis.

Construct a regular n-partition of [a, b] with

 $a = x_0 < x_1 < \dots < x_{i-1} < x_i < \dots < x_n = b.$

If $\triangle x_i$ is small, then V_i is approximately equal to the volume obtained by rotating R_i around the *y*-axis.

Rotating R_i generates a thin cylindrical shell S_i .

For this reason, this method for finding volumes is called the *Shell Method* (or *Cylindrical Shell Method*).

The volume V_i^* of the shell generated by R_i is

```
(circumference) \times (height) \times (thickness)
```

which is the same as

 $2\pi \times (\text{radius}) \times (\text{height}) \times (\text{thickness}).$

The height of the shell is $g(x_i) - f(x_i)$, its thickness is Δx_i , and the radius of revolution is x_i (the distance from the *y*-axis). Therefore, the volume V_i^* of S_i is

 $2\pi x_i(g(x_i) - f(x_i)) \triangle x_i.$

Volume $= 2\pi x_i \left(g(x_i) - f(x_i)\right) \Delta x_i$

Let $n \to \infty$ to get

$$V = \int_a^b 2\pi x (g(x) - f(x)) \, dx.$$

Volumes of Revolution: The Shell Method

Let $a \ge 0$. Let f and g be continuous on [a, b] with $f(x) \le g(x)$ for all $x \in [a, b]$.

Let W be the region bounded by the graphs of f and g, and the lines x = a and x = b.

Then the volume V of the solid of revolution obtained by rotating the region W around the y-axis is given by

$$V = \int_a^b 2\pi x (g(x) - f(x)) \, dx.$$

Example:

Find the volume of the solid obtained by revolving the closed region in the first quadrant bounded by the graphs of g(x) = x and $f(x) = x^2$ around the *y*-axis.

You should verify that the graphs intersect in the first quadrant when x = 0 and x = 1 on the interval [0, 1] with $f(x) \le g(x)$.

Example (continued):

$$V = \int_0^1 2\pi x (g(x) - f(x)) dx$$

= $\int_0^1 2\pi x (x - x^2) dx$
= $\int_0^1 2\pi (x^2 - x^3) dx = \frac{\pi}{6}$