Volumes of Revolution: Shell Method

Created by
Barbara Forrest and Brian Forrest

Volumes by the Shell Method

Problem: Assume that f and g are continuous on $[a, b]$, with $a \geq 0$ and $f(x) \leq g(x)$ on $[a, b]$.

Let W be the region bounded by the graphs of f and g and the lines $x=a$ and $x=b$.

Find the volume V of the solid obtained by rotating the region W around the y-axis.

Volumes by the Shell Method

Construct a regular n-partition of $[a, b]$ with

$$
a=x_{0}<x_{1}<\cdots<x_{i-1}<x_{i}<\cdots<x_{n}=b
$$

This partition subdivides the region W into n subregions.

Let \boldsymbol{W}_{i} denote the subregion of \boldsymbol{W} on the interval $\left[x_{i-1}, x_{i}\right.$]

Let V_{i} be the volume obtained by rotating W_{i} around the y-axis so that

$$
V=\sum_{i=1}^{n} V_{i} .
$$

Volumes by the Shell Method

Approximate $\boldsymbol{W}_{\boldsymbol{i}}$ by the rectangle \boldsymbol{R}_{i} with height $g\left(x_{i}\right)-f\left(x_{i}\right)$, and base on the line $y=f\left(x_{i}\right)$ and top on the line $y=g\left(x_{i}\right)$ in the interval $\left[x_{i-1}, x_{i}\right]$.

Volumes by the Shell Method

If $\triangle x_{i}$ is small, then V_{i} is approximately equal to the volume obtained by rotating \boldsymbol{R}_{i} around the y-axis.

Rotating R_{i} generates a thin cylindrical shell $\boldsymbol{S}_{\boldsymbol{i}}$.

For this reason, this method for finding volumes is called the Shell Method (or Cylindrical Shell Method).

Volumes by the Shell Method

The volume V_{i}^{*} of the shell generated by $\boldsymbol{R}_{\boldsymbol{i}}$ is

$$
(\text { circumference }) \times(\text { height }) \times(\text { thickness })
$$

which is the same as

$$
2 \pi \times(\text { radius }) \times(\text { height }) \times(\text { thickness }) .
$$

The height of the shell is $g\left(x_{i}\right)-f\left(x_{i}\right)$, its thickness is $\triangle x_{i}$, and the radius of revolution is x_{i} (the distance from the y-axis). Therefore, the volume $V_{i}{ }^{*}$ of S_{i} is

$$
2 \pi x_{i}\left(g\left(x_{i}\right)-f\left(x_{i}\right)\right) \triangle x_{i} .
$$

Volumes by the Shell Method

Volume $=2 \pi x_{i}\left(g\left(x_{i}\right)-f\left(x_{i}\right)\right) \Delta x_{i}$

Volumes by the Shell Method

$$
\begin{aligned}
V & =\sum_{i=1}^{n} V_{i} \\
& \cong \sum_{i=1}^{n} V_{i}^{*} \\
& =\sum_{i=1}^{2 \pi x_{i}\left(g\left(x_{i}\right)-f\left(x_{i}\right)\right) \Delta x_{i}}
\end{aligned}
$$

Let $n \rightarrow \infty$ to get

$$
V=\int_{a}^{b} 2 \pi x(g(x)-f(x)) d x
$$

Volumes by the Shell Method

Volumes of Revolution: The Shell Method
Let $a \geq 0$. Let f and g be continuous on $[a, b]$ with $f(x) \leq g(x)$ for all $x \in[a, b]$.

Let \boldsymbol{W} be the region bounded by the graphs of \boldsymbol{f} and \boldsymbol{g}, and the lines $x=a$ and $x=b$.

Then the volume \boldsymbol{V} of the solid of revolution obtained by rotating the region W around the y-axis is given by

$$
V=\int_{a}^{b} 2 \pi x(g(x)-f(x)) d x
$$

Volumes by the Shell Method

Example:

Find the volume of the solid obtained by revolving the closed region in the first quadrant bounded by the graphs of $g(x)=x$ and $f(x)=x^{2}$ around the y-axis.

You should verify that the graphs intersect in the first quadrant when $x=0$ and $x=1$ on the interval $[0,1]$ with $f(x) \leq g(x)$.

Volumes by the Shell Method

Example (continued):

