Volumes of Revolution: Disk Method (Part 2)

Created by
Barbara Forrest and Brian Forrest

Volumes by the Disk Method (One Function)

Recall:

Volumes of Revolution: The Disk Method I

Let f be continuous on $[a, b]$ with $f(x) \geq 0$ for all $x \in[a, b]$. Let W be the region bounded by the graphs of f, the \boldsymbol{x}-axis and the lines $\boldsymbol{x}=\boldsymbol{a}$ and $\boldsymbol{x}=\boldsymbol{b}$. Then the volume \boldsymbol{V} of the solid of revolution obtained by rotating the region \boldsymbol{W} around the \boldsymbol{x}-axis is given by

$$
V=\int_{a}^{b} \pi f(x)^{2} d x
$$

Volumes by the Disk Method (General Case)

Until now we have looked at volume problems that involved a region bounded by a function f and the x-axis.

Now we will look at a more general problem where the region that is revolved is bounded by two functions.

Volumes by the Disk Method (General Case)

Problem:

Suppose that $0 \leq f(x) \leq g(x)$.
We want to find the volume V of the solid formed by revolving the region W bounded by the graphs of f and g and the lines $x=a$ and $x=b$ around the x-axis.

Volumes by the Disk Method (General Case)

Observe that if we let $\boldsymbol{W}_{\mathbf{1}}$ denote the region bounded by the graph of \boldsymbol{g}, the \boldsymbol{x}-axis, and the lines $\boldsymbol{x}=\boldsymbol{a}$ and $x=b$

and we let $\boldsymbol{W}_{\mathbf{2}}$ denote region bounded by the graph f, the x-axis, and the lines $x=a$ and $x=b$,

then \boldsymbol{W} is the region that remains when we remove \boldsymbol{W}_{2} from $\boldsymbol{W}_{\mathbf{1}}$. It follows that the solid generated by revolving \boldsymbol{W} around the \boldsymbol{x}-axis is the same as the solid we would get by revolving \boldsymbol{W}_{1} around the \boldsymbol{x}-axis and then removing the portion that would correspond to the solid obtained by revolving $\boldsymbol{W}_{\mathbf{2}}$ around the \boldsymbol{x}-axis.

Volumes by the Disk Method (General Case)

Volumes by the Disk Method (General Case)

Volumes by the Disk Method (General Case)

Volumes by the Disk Method (General Case)

Let V_{1} be the volume of the solid obtained by rotating W_{1} and V_{2} be the volume of the solid obtained by rotating W_{2}. Then

$$
V=V_{1}-V_{2}
$$

However, the formula for volumes of revolution tells us that

$$
V_{1}=\int_{a}^{b} \pi g(x)^{2} d x \quad \text { and } \quad V_{2}=\int_{a}^{b} \pi f(x)^{2} d x
$$

Therefore,

$$
\begin{aligned}
V & =V_{1}-V_{2} \\
& =\int_{a}^{b} \pi g(x)^{2} d x-\int_{a}^{b} \pi f(x)^{2} d x \\
& =\int_{a}^{b} \pi\left(g(x)^{2}-f(x)^{2}\right) d x
\end{aligned}
$$

Volumes by the Disk Method (General Case)

Volumes of Revolution: The Disk Method II

Let f and g be continuous on $[a, b]$ with $0 \leq f(x) \leq g(x)$ for all $x \in[a, b]$.

Let W be the region bounded by the graphs of f and g, and the lines $x=a$ and $x=b$.

Then the volume \boldsymbol{V} of the solid of revolution obtained by rotating the region W around the x-axis is given by

$$
V=\int_{a}^{b} \pi\left(g(x)^{2}-f(x)^{2}\right) d x
$$

Volumes by the Disk Method (General Case)

Example:

Find the volume V of the solid obtained by revolving the closed region bounded by the graphs of $g(x)=x$ and $f(x)=x^{2}$ around the x-axis.

Volumes by the Disk Method (General Case)

Example (continued):

Since we have not been given the interval over which we will integrate, we must find the x-coordinates of the points where the graphs intersect.

We must solve

Moreover, on $[0,1]$, we have $0 \leq x^{2} \leq x$.
(I.e., the graph of x^{2} lies below the graph of x on this interval.)

Volumes by the Disk Method (General Case)

Volumes by the Disk Method (General Case)

The volume is

$$
\begin{aligned}
V & =\int_{0}^{1} \pi\left(g(x)^{2}-f(x)^{2}\right) d x \\
& =\int_{0}^{1} \pi\left((x)^{2}-\left(x^{2}\right)^{2}\right) d x \\
& =\int_{0}^{1} \pi\left(x^{2}-x^{4}\right) d x \\
& =\left.\pi\left(\frac{x^{3}}{3}-\frac{x^{5}}{5}\right)\right|_{0} ^{1} \\
& =\pi\left(\frac{1}{3}-\frac{1}{5}\right) \\
& =\frac{2 \pi}{15}
\end{aligned}
$$

Volumes by the Disk Method (General Case)

Suppose that f and g are continuous on $[a, b]$ with

$$
c \leq f(x) \leq g(x)
$$

for all $x \in[a, b]$.
Let W be the region bounded by the graphs of f and g, and the lines $x=a$ and $x=b$.

What is the volume V of the solid of revolution obtained by revolving the
 region W around the line $y=c$?
The previous analysis still applies. Therefore, as an exercise, verify that the volume in this case is

$$
V=\int_{a}^{b} \pi\left((g(x)-c)^{2}-(f(x)-c)^{2}\right) d x
$$

