Volumes of Revolution: Disk Method (Part 1)

Created by
Barbara Forrest and Brian Forrest

Volumes by the Disk Method

Problem:

Assume that f is continuous on $[a, b]$ and that $f(x) \geq 0$ on $[a, b]$.
Let \boldsymbol{W} be the region bounded by the graph of f, the lines $x=a$ and $x=b$ and the line $y=0$.

Volumes by the Disk Method

If region W is revolved around the x-axis an object called a solid of revolution is generated with the property that each vertical cross section of the solid is a circle with radius equal to the value of the function at the location of the slice.

Volumes by the Disk Method

Goal: Determine the volume V of this solid.

Volumes by the Disk Method

Using integration we begin with a regular n-partition

$$
a=t_{0}<t_{1}<t_{2}<\cdots<t_{i-1}<t_{i}<\cdots<t_{n-1}<t_{n}=b
$$

of $[a, b]$ with $\Delta t_{i}=\frac{b-a}{n}$ and $t_{i}=a+\frac{i(b-a)}{n}$.
This partition subdivides the region \boldsymbol{W} into n subregions. Let \boldsymbol{W}_{i} denote the subregion of W in the interval $\left[x_{i-1}, x_{i}\right]$.

Volumes by the Disk Method

Let V_{i} be the volume obtained by rotating W_{i} around the axis, then

$$
V=\sum_{i=1}^{n} V_{i}
$$

Volumes by the Disk Method

Replace W_{i} by the rectangle $\boldsymbol{R}_{\boldsymbol{i}}$ with height $\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$ and base on the interval $\left[x_{i-1}, x_{i}\right]$.

Volumes by the Disk Method

If Δx_{i} is small, then V_{i} is approximately equal to the volume obtained by rotating R_{i} around the x-axis. Rotating each R_{i} generates a thin cylindrical disk D_{i}.

Therefore, the solid is approximated by a series of thin disks.

Volumes by the Disk Method

For this reason, this method to find the volume of revolution is often called the Disk Method.

The next step is to determine the volume V_{i}^{*} of the disk $\boldsymbol{D}_{\boldsymbol{i}}$.

Volumes by the Disk Method

A close look at disk D_{i} shows that it has radius equal to the value of the function at $\boldsymbol{x}_{\boldsymbol{i}}$ and its thickness is $\triangle \boldsymbol{x}_{\boldsymbol{i}}$.

Since the volume of a cylindrical disk is
$\pi \times(\text { radius })^{2} \times($ thickness $)$
we get that

$$
V_{i}^{*}=\pi f\left(x_{i}\right)^{2} \triangle x_{i} .
$$

Volume of Disk $=\pi f\left(x_{i}\right)^{2} \Delta x_{i}$

Volumes by the Disk Method

Then the approximation for the total volume of the solid of revolution is:

$$
\begin{aligned}
V & =\sum_{i=1}^{n} V_{i} \\
& \cong \sum_{i=1}^{n} V_{i}^{*} \\
& =\sum_{i=1}^{n} \pi f\left(x_{i}\right)^{2} \triangle x_{i}
\end{aligned}
$$

It follows that

$$
V \cong \sum_{i=1}^{n} \pi f\left(x_{i}\right)^{2} \triangle x_{i}
$$

and this is a Riemann sum for function $\pi f(x)^{2}$ over the interval $[a, b]$.
Letting $n \rightarrow \infty$, we achieve the formula for the volume of revolution.

Volumes by the Disk Method

Volumes of Revolution: The Disk Method I

Let f be continuous on $[a, b]$ with $f(x) \geq 0$ for all $x \in[a, b]$. Let W be the region bounded by the graphs of f, the x-axis and the lines $x=a$ and $x=b$. Then the volume V of the solid of revolution obtained by rotating the region W around the x-axis is given by

$$
V=\int_{a}^{b} \pi f(x)^{2} d x
$$

Volumes by the Disk Method

Example: Find the volume of the solid of revolution obtained by rotating the region bounded by the graph of the function $f(x)=x^{2}$, the x-axis, and the lines $x=0$ and $x=1$, around the x-axis.

$$
\begin{aligned}
V & =\int_{0}^{1} \pi f(x)^{2} d x \\
& =\int_{0}^{1} \pi\left(x^{2}\right)^{2} d x \\
& =\pi \int_{0}^{1} x^{4} d x \\
& =\left.\pi \frac{x^{5}}{5}\right|_{0} ^{1} \\
& =\frac{\pi}{5}
\end{aligned}
$$

Volumes by the Disk Method

Example:

Find the volume of the sphere of radius r obtained by rotating the semi-circular region bounded by the graph of $f(x)=\sqrt{r^{2}-x^{2}}$, the lines $x=-r, x=r$ and $y=0$ around the x-axis.

Volumes by the Disk Method

Example (continued): Find the volume of the sphere of radius r obtained by rotating the semi-circular region bounded by the graph of $f(x)=\sqrt{r^{2}-x^{2}}$, the lines $x=-r, x=r$ and $y=0$ around the x-axis.

which is the general formula for the volume of a sphere.

