Volumes of Revolution: Disk Method (Part 1)

Created by

Barbara Forrest and Brian Forrest

Problem:

Assume that f is continuous on [a, b] and that $f(x) \ge 0$ on [a, b].

Let W be the region bounded by the graph of f, the lines x = a and x = b and the line y = 0.

If region W is revolved around the x-axis an object called a *solid of revolution* is generated with the property that each vertical cross section of the solid is a circle with radius equal to the value of the function at the location of the slice.

Goal: Determine the volume V of this solid.

Using integration we begin with a regular *n*-partition

$$a = t_0 < t_1 < t_2 < \dots < t_{i-1} < t_i < \dots < t_{n-1} < t_n = b$$

of $[a, b]$ with $\Delta t_i = \frac{b-a}{n}$ and $t_i = a + \frac{i(b-a)}{n}$.

This partition subdivides the region W into n subregions. Let W_i denote the subregion of W in the interval $[x_{i-1}, x_i]$.

Let V_i be the volume obtained by rotating W_i around the axis, then

Replace W_i by the rectangle R_i with height $f(x_i)$ and base on the interval $[x_{i-1}, x_i]$.

If $\triangle x_i$ is small, then V_i is approximately equal to the volume obtained by rotating R_i around the *x*-axis. Rotating each R_i generates a thin cylindrical disk D_i .

Therefore, the solid is approximated by a series of thin disks.

For this reason, this method to find the volume of revolution is often called the *Disk Method*.

The next step is to determine the volume V_i^* of the disk D_i .

A close look at disk D_i shows that it has radius equal to the value of the function at x_i and its thickness is Δx_i .

Then the approximation for the total volume of the solid of revolution is:

$$V = \sum_{i=1}^{n} V_i$$
$$\cong \sum_{i=1}^{n} V_i^*$$
$$= \sum_{i=1}^{n} \pi f(x_i)^2 \triangle x_i$$

It follows that

$$V \cong \sum_{i=1}^{n} \pi f(x_i)^2 \triangle x_i$$

and this is a Riemann sum for function $\pi f(x)^2$ over the interval [a, b]. Letting $n \to \infty$, we achieve the formula for the volume of revolution.

Volumes of Revolution: The Disk Method I

Let f be continuous on [a, b] with $f(x) \ge 0$ for all $x \in [a, b]$. Let W be the region bounded by the graphs of f, the x-axis and the lines x = a and x = b. Then the volume V of the solid of revolution obtained by rotating the region W around the x-axis is given by

$$V = \int_a^b \pi f(x)^2 dx.$$

Example: Find the volume of the solid of revolution obtained by rotating the region bounded by the graph of the function $f(x) = x^2$, the *x*-axis, and the lines x = 0 and x = 1, around the *x*-axis.

Example:

Find the volume of the sphere of radius r obtained by rotating the semi-circular region bounded by the graph of $f(x) = \sqrt{r^2 - x^2}$, the lines x = -r, x = r and y = 0 around the x-axis.

Example (continued): Find the volume of the sphere of radius r obtained by rotating the semi-circular region bounded by the graph of $f(x) = \sqrt{r^2 - x^2}$, the lines x = -r, x = r and y = 0 around the x-axis.

which is the general formula for the volume of a sphere.