Areas Between Curves: Examples

Created by
Barbara Forrest and Brian Forrest

Areas Under Curves: Examples

Recall:

Area Between Curves

Let f and g be continuous on $[a, b]$. Let \boldsymbol{A} be the region bounded by the graphs of f and g, the line $t=a$ and the line $t=b$. Then the area of region \boldsymbol{A} is given by

$$
A=\int_{a}^{b}|g(t)-f(t)| d t
$$

Areas Under Curves: Examples

Example:

Find the area A of the closed region bounded by the graphs of the functions $g(x)=x^{2}$ and $f(x)=x^{3}$.

This area is the shaded region in the diagram.

Areas Under Curves: Examples

Example (continued):
The graphs cross when $x^{3}=x^{2}$ or when

$$
\begin{aligned}
& 0=x^{3}-x^{2} \\
& \Rightarrow \quad 0 \quad=x^{2}(x-1)
\end{aligned}
$$

This occurs when $x=0$ and $x=1$.

The area is bounded by the functions $g(x)=x^{2}$ and $f(x)=x^{3}$ between the lines $x=0$ and

$x=1$.

Areas Under Curves: Examples

Example (continued):
Notice that $x^{2} \geq x^{3}$ on the interval $[0,1]$.

Then the area is

$$
\begin{aligned}
A & =\int_{0}^{1}\left(x^{2}-x^{3}\right) d x \\
& =\left.\left(\frac{x^{3}}{3}-\frac{x^{4}}{4}\right)\right|_{0} ^{1} \\
& =\left(\frac{1}{3}-\frac{1}{4}\right)-(0-0) \\
& =\frac{1}{12}
\end{aligned}
$$

Areas Under Curves: Examples

Example:

Find the total area A of the closed regions bounded by the graphs of the functions $f(x)=x$ and $g(x)=x^{3}$.

The shaded regions in the diagram represent \boldsymbol{A}.

Areas Under Curves: Examples

Example (continued):
Points of Intersection
The graphs intersect where $x^{3}=x$.

$$
\begin{aligned}
0 & =x^{3}-x \\
\Rightarrow 0 & =x\left(x^{2}-1\right)
\end{aligned}
$$

$$
\Rightarrow 0=x(x+1)(x-1)
$$

The points of intersection
occur at $x=-1$,
$x=0$, and $x=1$.

$$
g(x)=x^{3}
$$

Areas Under Curves: Examples

Example (continued):
We cannot apply the Fundamental Theorem of Calculus directly to $\left|x^{3}-x\right|$ to calculate the area since f and g intersect on the interval $[-1,1]$.

Areas Under Curves: Examples

Example (continued):
Instead, we must consider the area in two parts, $A 1$ and $A 2$.

Areas Under Curves: Examples

Example (continued):
Case: Area of A1
On the interval $[-1,0]$

$$
x^{3} \geq x
$$

so
$\int_{-1}^{0}\left|x^{3}-x\right| d x=\int_{-1}^{0}\left(x^{3}-x\right) d x$
$g(x)=x^{3}$
1
This integral represents A1, the shaded area in the diagram.

$$
f(x)=x
$$

Areas Under Curves: Examples

Example (continued):
Case: Area of A2
On the interval $[\mathbf{0 , 1}]$

$$
x \geq x^{3}
$$

so
$\int_{0}^{1}\left|x^{3}-x\right| d x=\int_{0}^{1}\left(x-x^{3}\right) d x$

This integral represents A2, the shaded area in the diagram.

Areas Under Curves: Examples

Example (continued):

Total Area

Between the Curves
The total area \boldsymbol{A} between the curves $f(x)=x$ and $g(x)=x^{3}$ on the interval $[-1,1]$ is

$$
A=A 1+A 2
$$

Areas Under Curves: Examples

Example (continued):
Total Area Between the Curves

$$
\begin{aligned}
A & =\int_{-1}^{1}\left|x^{3}-x\right| d x \\
& =A 1+A 2 \\
& =\int_{-1}^{0}\left|x^{3}-x\right| d x+\int_{0}^{1}\left|x^{3}-x\right| d x \int_{-1}^{g(x)=x^{3}} f_{f(x}^{A 1} \\
& \left.=x^{3}-x\right) d x+\int_{0}^{1}\left(x-x^{3}\right) d x \\
& =\left.\left(\frac{x^{4}}{4}-\frac{x^{2}}{2}\right)\right|_{-1} ^{0}+\left.\left(\frac{x^{2}}{2}-\frac{x^{4}}{4}\right)\right|_{0} ^{1} \\
& =\left((0-0)-\left(\frac{1}{4}-\frac{1}{2}\right)\right)+\left(\left(\frac{1}{2}-\frac{1}{4}\right)-(0-0)\right) \\
& =\frac{1}{4}+\frac{1}{4} \\
& =\frac{1}{2}
\end{aligned}
$$

