Created by

Barbara Forrest and Brian Forrest

Problem:

Let f be continuously differentiable on [a,b]. What is the arc length S of the graph of f on the interval [a,b]?

Let

$$a = x_0 < x_1 < \dots < x_{i-1} < x_i < \dots < x_n = b$$

be a regular n-partition of [a, b].

Let S_i denote the length of the arc joining $(x_{i-1},f(x_{i-1}))$ and $(x_i,f(x_i))$.

Then the length of the graph of f on the interval [a,b] is

$$S = \sum_{i=1}^{n} S_i.$$

Observe that if $\triangle x_i$ is small, then S_i is approximately equal to the length of the secant line joining $(x_{i-1}, f(x_{i-1}))$ and $(x_i, f(x_i))$.

$$S_i \cong \sqrt{(\triangle x_i)^2 + (\triangle y_i)^2}$$
$$= \sqrt{(\triangle x_i)^2 + (f(x_i) - f(x_{i-1}))^2}$$

Applying the Mean Value Theorem guarantees a $c_i \in (x_{i-1}, x_i)$ so

$$f(x_i) - f(x_{i-1}) = f'(c_i) \triangle x_i.$$

Therefore.

$$S_{i} \cong \sqrt{(\triangle x_{i})^{2} + (f(x_{i}) - f(x_{i-1}))^{2}}$$

$$= \sqrt{(\triangle x_{i})^{2} + (f'(c_{i})\triangle x_{i})^{2}}$$

$$= \sqrt{(\triangle x_{i})^{2} + (f'(c_{i}))^{2}(\triangle x_{i})^{2}}$$

$$= \sqrt{(\triangle x_{i})^{2}(1 + (f'(c_{i}))^{2})}$$

$$= \sqrt{1 + (f'(c_{i}))^{2}} \triangle x_{i}$$

Hence,

$$S = \sum_{i=1}^{n} S_i$$

$$\cong \sum_{i=1}^{n} \sqrt{1 + (f'(c_i))^2} \triangle x_i$$

Note that

$$S \cong \sum_{i=1}^{n} \sqrt{1 + (f'(c_i))^2} \, \triangle x_i$$

is a Riemann sum for the function $\sqrt{1+(f'(x))^2}$ over the interval [a,b].

Therefore, letting $n \to \infty$, we get

$$S = \int_a^b \sqrt{1 + (f'(x))^2} \, dx.$$

Arc Length

Let f be continuously differentiable on [a,b]. Then the arc length S of the graph of f over the interval [a,b] is given by

$$S = \int_a^b \sqrt{1 + (f'(x))^2} \, dx$$

Example:

Find the length S of the portion of the graph of the function $f(x)=\dfrac{2x^{\frac{3}{2}}}{3}$ between x=1 and x=2.

In this case, $f'(x) = x^{\frac{1}{2}}$.

$$S = \int_{1}^{2} \sqrt{1 + (f'(x))^{2}} dx$$

$$= \int_{1}^{2} \sqrt{1 + (x^{\frac{1}{2}})^{2}} dx$$

$$= \int_{1}^{2} \sqrt{1 + x} dx$$

$$= \frac{2(1 + x)^{\frac{3}{2}}}{3} \Big|_{1}^{2}$$

$$= \frac{2(3)^{\frac{3}{2}}}{3} - \frac{2(2)^{\frac{3}{2}}}{3}$$

$$= \frac{2}{3}(3^{\frac{3}{2}} - 2^{\frac{3}{2}})$$

$$\cong 1.578$$