Arc Length

Created by

Barbara Forrest and Brian Forrest

Arc Length

Problem:

Let f be continuously differentiable on $[a, b]$. What is the arc length S of the graph of f on the interval $[a, b]$?

Arc Length

Let

$$
a=x_{0}<x_{1}<\cdots<x_{i-1}<x_{i}<\cdots<x_{n}=b
$$

be a regular n-partition of $[a, b]$.
Let S_{i} denote the length of the arc joining $\left(x_{i-1}, f\left(x_{i-1}\right)\right)$ and $\left(x_{i}, f\left(x_{i}\right)\right)$.

Then the length of the graph of f on the interval $[a, b]$ is

$$
S=\sum_{i=1}^{n} S_{i}
$$

Arc Length

Observe that if $\triangle x_{i}$ is small, then S_{i} is approximately equal to the length of the secant line joining ($x_{i-1}, f\left(x_{i-1}\right)$) and ($x_{i}, f\left(x_{i}\right)$).

Arc Length

$$
\begin{aligned}
S_{i} & \cong \sqrt{\left(\triangle x_{i}\right)^{2}+\left(\triangle y_{i}\right)^{2}} \\
& =\sqrt{\left(\triangle x_{i}\right)^{2}+\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)^{2}}
\end{aligned}
$$

Arc Length

Applying the Mean Value Theorem guarantees a $c_{i} \in\left(x_{i-1}, x_{i}\right)$ so

$$
f\left(x_{i}\right)-f\left(x_{i-1}\right)=f^{\prime}\left(c_{i}\right) \triangle x_{i} .
$$

Therefore,

$$
\begin{aligned}
S_{i} & \cong \sqrt{\left(\triangle x_{i}\right)^{2}+\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)^{2}} \\
& =\sqrt{\left(\triangle x_{i}\right)^{2}+\left(f^{\prime}\left(c_{i}\right) \triangle x_{i}\right)^{2}} \\
& =\sqrt{\left(\triangle x_{i}\right)^{2}+\left(f^{\prime}\left(c_{i}\right)\right)^{2}\left(\triangle x_{i}\right)^{2}} \\
& =\sqrt{\left(\triangle x_{i}\right)^{2}\left(1+\left(f^{\prime}\left(c_{i}\right)\right)^{2}\right)} \\
& =\sqrt{1+\left(f^{\prime}\left(c_{i}\right)\right)^{2}} \triangle x_{i}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
S & =\sum_{i=1}^{n} S_{i} \\
& \cong \sum_{i=1}^{n} \sqrt{1+\left(f^{\prime}\left(c_{i}\right)\right)^{2}} \triangle x_{i}
\end{aligned}
$$

Arc Length

Note that

$$
S \cong \sum_{i=1}^{n} \sqrt{1+\left(f^{\prime}\left(c_{i}\right)\right)^{2}} \triangle x_{i}
$$

is a Riemann sum for the function $\sqrt{1+\left(f^{\prime}(x)\right)^{2}}$ over the interval $[a, b]$.

Therefore, letting $n \rightarrow \infty$, we get

$$
S=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Arc Length

Arc Length

Let f be continuously differentiable on $[a, b]$. Then the arc length S of the graph of f over the interval $[a, b]$ is given by

$$
S=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Arc Length

$$
\begin{aligned}
S & =\int_{1}^{2} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x \\
& =\int_{1}^{2} \sqrt{1+\left(x^{\frac{1}{2}}\right)^{2}} d x
\end{aligned}
$$

Example:

Find the length S of the portion of the

$$
=\int_{1}^{2} \sqrt{1+x} d x
$$

graph of the function $f(x)=\frac{2 x^{\frac{3}{2}}}{3}$ between $x=1$ and $x=2$.

$$
=\left.\frac{2(1+x)^{\frac{3}{2}}}{3}\right|_{1} ^{2}
$$

In this case, $f^{\prime}(x)=x^{\frac{1}{2}}$.

$$
\begin{aligned}
& =\frac{2(3)^{\frac{3}{2}}}{3}-\frac{2(2)^{\frac{3}{2}}}{3} \\
& =\frac{2}{3}\left(3^{\frac{3}{2}}-2^{\frac{3}{2}}\right)
\end{aligned}
$$

$$
\cong 1.578
$$

