Created by

Barbara Forrest and Brian Forrest

Recall:

Theorem: [Monotone Convergence Theorem (MCT)]

If $\{a_n\}$ is non-decreasing and bounded above, then $\{a_n\}$ converges.

Question: Is there an analog of the MCT for monotonic functions?

Theorem: [Monotone Convergence Theorem for Functions (MCTF)]

Assume that f is nondecreasing on $[a, \infty)$. Let

$$S = \{f(x) \mid x \in [a,\infty)\}$$

If S is bounded above, then lim _{x→∞} f(x) = L = lub(S).
If S is not bounded above, then lim _{x→∞} f(x) = ∞.

Proof:

1) Assume that S is bounded. Let L = lub(S).

Proof:

1) Assume that S is bounded. Let L = lub(S). Let $\epsilon > 0$.

Proof:

1) Assume that S is bounded. Let L = lub(S). Let $\epsilon > 0$. Then $L - \epsilon$ is not an upper bound for S so there exists $N \in [a, \infty)$ with

$$L - \epsilon < f(N) \le L$$

Proof:

1) Assume that S is bounded. Let L = lub(S). Let $\epsilon > 0$. Then $L - \epsilon$ is not an upper bound for S so there exists $N \in [a, \infty)$ with

$$L - \epsilon < f(N) \le L$$

Since f is non-decreasing, if $x \ge N$, then

$$L - \epsilon < f(N) \le f(x) \le L$$

Proof:

2) Assume that S is not bounded above.

Proof:

2) Assume that S is not bounded above. Let M > 0.

Proof:

2) Assume that S is not bounded above. Let M > 0. Since M is not an upper bound for S, there exists $N \in [a, \infty)$ with

f(N) > M

Proof:

2) Assume that S is not bounded above. Let M > 0. Since M is not an upper bound for S, there exists $N \in [a, \infty)$ with

f(N) > M

Since f is non-decreasing, if $x \ge N$, then

 $f(x) \geq f(N) > M$

Application to Improper Integrals:

Assume that f is continuous and positive on $[a,\infty).$ For each $b\in[a,\infty)$ define

$$F(b) = \int_a^b f(t) \, dt.$$

1) Since F is increasing on $[a,\infty)$, we get that

$$\int_a^\infty f(t)\,dt$$

converges if and only if

$$S = \{F(b) \mid b \in [a,\infty)\}$$

is bounded above.

In case of convergence

$$\int_a^\infty f(t)\,dt = L = lub(S)$$

2) We have

$$\int_{a}^{\infty} f(t) dt = \lim_{n \to \infty} \int_{a}^{n} f(t) dt$$

where in this case $n \in \mathbb{N}$.

Example: Observe that

$$F(b) = \int_0^b \cos(x) \, dx = \sin(x) \big|_0^b = \sin(b)$$

Hence,

$$S=\{F(b)\mid b\in[0,\infty)\}$$

is bounded, but

$$\int_0^\infty \cos(x)\,dx$$

diverges.