Integration by Parts

Created by

Barbara Forrest and Brian Forrest

The Integration by Parts Formula

Recall: The Product Rule for derivatives states that

$$
\begin{aligned}
\frac{d}{d x}(f \cdot g)(x) & =\left(\frac{d f}{d x}\right)(x) \cdot g(x)+f(x) \cdot\left(\frac{d g}{d x}\right)(x) \\
& =f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
\end{aligned}
$$

Key Observation: To undo the Product Rule we get that if f and g are differentiable,

$$
f(x) g(x)=\int \frac{d}{d x}(f(x) g(x)) d x=\int f^{\prime}(x) g(x) d x+\int f(x) g^{\prime}(x) d x
$$

Definition: [Integration by Parts Formula]

$$
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int f^{\prime}(x) g(x) d x
$$

or

$$
\int f^{\prime}(x) g(x) d x=f(x) g(x)-\int f(x) g^{\prime}(x) d x
$$

The Strategy

Example: Evaluate $\int x e^{x} d x$.

Strategy:

- The goal is to rid the integrand of the x.
- The method to remove the x is to differentiate it "downwards" to produce the constant 1.
- As a compensation, we must integrate the other factor e^{x} "upwards".
- Integrating e^{x} is not difficult.

The Strategy

Example: Evaluate $\int x e^{x} d x$.
Solution: Let

$$
f(x)=x \text { and } g^{\prime}(x)=e^{x}
$$

Then

$$
f^{\prime}(x)=1 \text { and } g(x)=e^{x}
$$

Integrating by parts, we have

$$
\begin{aligned}
\int x e^{x} d x=\int f(x) g^{\prime}(x) d x & =f(x) g(x)-\int f^{\prime}(x) g(x) d x \\
& =x e^{x}-\int 1 \cdot e^{x} d x \\
& =x e^{x}-e^{x}+C
\end{aligned}
$$

More Examples

Example: Evaluate $\int x^{2} \sin (x) d x$.
Strategy: We would like to eliminate the x^{2} term. We can do this by differentiating twice \Rightarrow using Integration by Parts twice!

Step 1: Let $f(x)=x^{2}, g^{\prime}(x)=\sin (x)$. Then $f^{\prime}(x)=2 x$ and $g(x)=-\cos (x)$.

$$
\begin{aligned}
\int x^{2} \sin (x) d x & =-x^{2} \cos (x)-\int 2 x(-\cos (x)) d x \\
& =-x^{2} \cos (x)+2 \int x \cos (x) d x
\end{aligned}
$$

More Examples

Example (continued): Evaluate $\int x^{2} \sin (x) d x$.
Step 2: Evaluate $\int x \cos (x) d x$.
Let $f(x)=x, g^{\prime}(x)=\cos (x)$. Then $f^{\prime}(x)=1$ and $g(x)=\sin (x)$.

$$
\begin{aligned}
\int x \cos (x) d x & =x \sin (x)-\int \sin (x) d x \\
& =x \sin (x)+\cos (x)+C
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int x^{2} \sin (x) d x & =-x^{2} \cos (x)+2 \int x \cos (x) d x \\
& =-x^{2} \cos (x)+2 x \sin (x)+2 \cos (x)+C
\end{aligned}
$$

