Comparison Test for Integrals

Created by

Barbara Forrest and Brian Forrest

Monotone Convergence Theorem for Functions

Theorem: [Monotone Convergence Theorem for Functions (MCTF)]

Assume that F is nondecreasing on $[a,\infty)$. Let

$$S = \{F(x) \mid x \in [a,\infty)\}$$

1) If S is bounded above, then $\lim_{x \to \infty} F(x) = L = lub(S)$.

2) If S is not bounded above, then $\lim_{x \to \infty} F(x) = \infty$.

Application to Improper Integrals:

Assume that f is continuous and positive on $[a,\infty)$. For each $b\in[a,\infty)$ define

$$F(b) = \int_a^b f(t) \, dt.$$

Then $\int_{a}^{\infty} f(t) dt$ converges if and only if

$$S=\{F(b)\mid b\in [a,\infty)\}$$

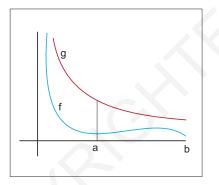
is bounded above. In case of convergence

$$\int_{a}^{\infty} f(t) \, dt = L = lub(S)$$

Question: We know from the *p*-Test that

$$\int_1^\infty rac{1}{x^4} \, dx$$

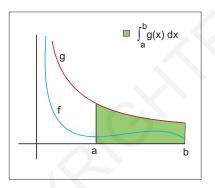
converges. What can we say about


$$\int_1^\infty rac{1}{1+x^4}\,dx$$
 ?

Key Observation: We know that

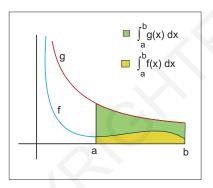
$$0 < \frac{1}{1+x^4} < \frac{1}{x^4}$$

for all $x \ge 1$ so is it true that


$$\int_1^\infty \frac{1}{x^4} \, dx < \infty \Rightarrow \int_1^\infty \frac{1}{1+x^4} \, dx < \infty ?$$

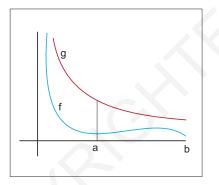
Theorem: [Comparison Test for Improper Integals]

Assume that $0 \le f(x) \le g(x)$ for all $x \ge a$ and that both f and g are integrable on [a, b] for all b > a.


1. If $\int_a^{\infty} g(x) dx$ converges, then so does $\int_a^{\infty} f(x) dx$.

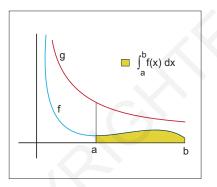
Theorem: [Comparison Test for Improper Integals]

Assume that $0 \le f(x) \le g(x)$ for all $x \ge a$ and that both f and g are integrable on [a, b] for all b > a.


1. If $\int_a^{\infty} g(x) dx$ converges, then so does $\int_a^{\infty} f(x) dx$.

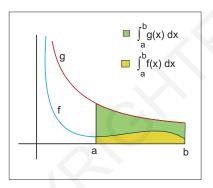
Theorem: [Comparison Test for Improper Integals]

Assume that $0 \le f(x) \le g(x)$ for all $x \ge a$ and that both f and g are integrable on [a, b] for all b > a.


1. If $\int_a^{\infty} g(x) dx$ converges, then so does $\int_a^{\infty} f(x) dx$.

Theorem: [Comparison Test for Improper Integals]

Assume that $0 \le f(x) \le g(x)$ for all $x \ge a$ and that both f and g are integrable on [a, b] for all b > a.


- 1. If $\int_a^{\infty} g(x) dx$ converges, then so does $\int_a^{\infty} f(x) dx$.
- 2. If $\int_a^{\infty} f(x) dx$ diverges, then so does $\int_a^{\infty} g(x) dx$.

Theorem: [Comparison Test for Improper Integals]

Assume that $0 \le f(x) \le g(x)$ for all $x \ge a$ and that both f and g are integrable on [a, b] for all b > a.

- 1. If $\int_a^{\infty} g(x) dx$ converges, then so does $\int_a^{\infty} f(x) dx$.
- 2. If $\int_a^{\infty} f(x) dx$ diverges, then so does $\int_a^{\infty} g(x) dx$.

Theorem: [Comparison Test for Improper Integals]

Assume that $0 \le f(x) \le g(x)$ for all $x \ge a$ and that both f and g are integrable on [a, b] for all b > a.

- 1. If $\int_a^{\infty} g(x) dx$ converges, then so does $\int_a^{\infty} f(x) dx$.
- 2. If $\int_a^{\infty} f(x) dx$ diverges, then so does $\int_a^{\infty} g(x) dx$.

Proof:

1) Assume that $\int_a^\infty g(x)\,dx$ converges. For each $b\in [a,\infty)$

$$\int_a^b f(x) \, dx \leq \int_a^b g(x) \, dx \leq \int_a^\infty g(x) \, dx.$$

By the Monotone Convergence Theorem for Functions $\int_a^\infty f(x)\,dx$ converges.

2) Assume that $\int_a^\infty f(x) \, dx$ diverges. Then

$$\lim_{b\to\infty}\int_a^b f(x)\,dx=\infty$$

However, since

$$\int_a^b f(x) \, dx \leq \int_a^b g(x) \, dx$$

for each b > a, we have

$$\lim_{b\to\infty}\int_a^b g(x)\,dx=\infty$$

Example: We know that

$$0 < \frac{1}{1+x^4} < \frac{1}{x^4}$$

for all $x \geq 1$ and so $\int_1^\infty \frac{1}{x^4} \, dx$ converges by the p-Test.

It follows that

$$\int_1^\infty \frac{1}{1+x^4} \, dx$$

converges by The Comparison Test.

Problem: Does

$$\int_{1}^{\infty} \frac{\sin(x)}{x^2} \, dx$$

.)

converge?

Observation : We know that

$$\frac{\sin(x)}{x^2} \le \frac{1}{x^2}$$
$$\int_1^\infty \frac{1}{x^2} dx$$

for all x > 0 and that

converges.

Question: Does this mean that

$$\int_1^\infty \frac{\sin(x)}{x^2} \, dx$$

converges?

Note: $f(x) = \frac{\sin(x)}{x^2}$ is not positive.

Problem (continued): Does

$$\int_{1}^{\infty} \frac{\sin(x)}{x^2} \, dx$$

converge?

Observation : We have that

$$\frac{|\sin(x)|}{x^2} \le \frac{1}{x^2}$$

for all x > 0 and hence

$$\int_1^\infty \frac{|\sin(x)|}{x^2} \, dx$$

also converges by the Comparison Test.

Claim: We claim that this shows that

$$\int_1^\infty \frac{\sin(x)}{x^2} \, dx$$

converges.

Definition: [Absolute Convergence for Type I Improper Integrals]

Let f be integrable on [a, b] for all $b \ge a$. We say that the improper integral

 $\int_a^\infty f(x)\,dx$

converges absolutely if

 $\int_a^\infty \mid f(x) \mid \, dx$

converges.

Theorem: [Absolute Convergence Theorem for Improper Integrals]

Let f be integrable on [a, b] for all b > a. Then |f| is also integrable on [a, b] for all b > a. Moreover, if we assume that

$$\int_a^\infty \mid f(x)\mid\,dx$$

converges, then so does

$$\int_a^\infty f(x)\,dx$$

In particular, if

$$0 \leq |f(x)| \leq g(x)$$

for all $x \geq a$, both f and g are integrable on [a, b] for all $b \geq a$, and if

$$\int_a^\infty g(x)\,dx$$

converges, then so does

$$\int_a^\infty f(x)\,dx$$

Absolute Convergence

Proof: We will not prove the integrability of |f|.

Let

$$h(x) = f(x) + \mid f(x)$$

Then

$$0 \leq h(x) \leq 2 \mid f(x) \mid$$

so by the Comparison Test

 $\int_a^\infty h(x)\,dx$

converges.

Therefore, so does

$$\int_a^\infty f(x)\,dx$$

and in fact

$$\int_a^\infty f(x)\,dx = \int_a^\infty h(x)dx - \int_a^\infty \mid f(x)\mid \,dx$$

Absolute Convergence

Example: Show that

$$\int_{1}^{\infty} \frac{\sin(x)}{x^2} \, dx$$

converges.

We have

$$0 \leq \frac{|\sin(x)|}{x^2} \leq \frac{1}{x^2}$$

so by the Comparison Test and the p-Test.

$$\int_1^\infty \frac{|\sin(x)|}{x^2} \, dx$$

converges. It follows that

$$\int_{1}^{\infty} \frac{\sin(x)}{x^2} \, dx$$

converges.