Properties of the Integral

Created by

Barbara Forrest and Brian Forrest

Definition of the Integral

Definition: [Definite Integral]

We say that a bounded function f is integrable on $[a, b]$ if there exists a unique number $\boldsymbol{I} \in \mathbb{R}$ such that if whenever $\left\{\boldsymbol{P}_{n}\right\}$ is a sequence of partitions with $\lim _{n \rightarrow \infty}\left\|P_{n}\right\|=0$ and $\left\{S_{n}\right\}$ is any sequence of Riemann sums associated with the $\boldsymbol{P}_{\boldsymbol{n}}$'s, we have

$$
\lim _{n \rightarrow \infty} S_{n}=I
$$

In this case, we call \boldsymbol{I} the integral of f over $[a, b]$ and denote it by

$$
\int_{a}^{b} f(t) d t
$$

The points a and b are called the limits of integration and the function $f(t)$ is called the integrand. The variable t is called the variable of integration.

Properties of Definite Integrals

Theorem: [Properties of Definite Integrals]

Assume that f and g are integrable on the interval $[a, b]$. Then
i) For any $c \in \mathbb{R}, \int_{a}^{b} c f(t) d t=c \int_{a}^{b} f(t) d t$
ii) $\int_{a}^{b}(f+g)(t) d t=\int_{a}^{b} f(t) d t+\int_{a}^{b} g(t) d t$
iii) If $m \leq f(t) \leq M$ for all $t \in[a, b]$, then

$$
m(b-a) \leq \int_{a}^{b} f(t) d t \leq M(b-a)
$$

iv) If $0 \leq f(t)$ for all $t \in[a, b]$, then $0 \leq \int_{a}^{b} f(t) d t$
v) If $g(t) \leq f(t)$ for all $t \in[a, b]$, then $\int_{a}^{b} g(t) d t \leq \int_{a}^{b} f(t) d t$.
vi) The function $|f|$ is integrable on $[a, b]$ and

$$
\left|\int_{a}^{b} f(t) d t\right| \leq \int_{a}^{b}|f(t)| d t
$$

Properties of Definite Integrals

Remark: So far in defining the definite integral we have always considered integrals of the form

$$
\int_{a}^{b} f(t) d t
$$

where $\boldsymbol{a}<\boldsymbol{b}$. However, it is necessary to give meaning to

$$
\int_{a}^{a} f(t) d t
$$

and to

$$
\int_{b}^{a} f(t) d t
$$

Properties of Definite Integrals

Question: How should we define $\int_{a}^{a} f(t) d t$?
Remark: We can see that the line segment has height $f(a)$ but length 0 . As such it makes sense to define its "area" to be 0 .

Definition: [Identical Limits of Integration: $\int_{a}^{a} f(t) d t$]
Let $f(t)$ be defined at $t=a$. Then we define

$$
\int_{a}^{a} f(t) d t=0
$$

Properties of Definite Integrals

Remark: In the definition of

$$
\int_{a}^{b} f(t) d t
$$

where $a<b$, we began at the left-hand endpoint a of an interval $[a, b]$ and moved to the right towards b. In the case of the integral

$$
\int_{b}^{a} f(t) d t
$$

where $a<b$, we are suggesting that using the interval $[a, b]$ we move from b to the left towards a. This is the opposite or negative of the original orientation.

Definition: [Switching the Limits of Integration]

Let f be integrable on the interval $[a, b]$ where $a<b$. Then we define

$$
\int_{b}^{a} f(t) d t=-\int_{a}^{b} f(t) d t .
$$

Properties of Definite Integrals

Remark: Assume that f is continuous and positive on $[a, b]$ with $a<c<b$. Since

$$
R=R_{1}+R_{2}
$$

we should have

$$
\int_{a}^{b} f(t) d t=\int_{a}^{c} f(t) d t+\int_{c}^{b} f(t) d t
$$

Properties of Definite Integrals

Theorem: [Integrals over Subintervals]
Assume that f is integrable on an interval I containing a, b and c. Then

$$
\int_{a}^{b} f(t) d t=\int_{a}^{c} f(t) d t+\int_{c}^{b} f(t) d t
$$

Properties of Definite Integrals

Remark: Assume that f is integrable on the interval $[a, c]$ where $a<b<c$. Since $\int_{b}^{c} f(x) d x=-\int_{c}^{b} f(x) d x$, we get

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\int_{a}^{c} f(x) d x-\int_{b}^{c} f(x) d x \\
& =\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
\end{aligned}
$$

