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Integral Functions

Remark:

Assume that the function f is continuous on an interval [a, b]. Define the
integral function G on [a, b] by

G(z) = /w £(t) dt.

Questions:

What are the properties of G?
Is it continuous?

Is it differentiable?

If so whatis G’ (x)?



Integral Functions

Note: If f > 0on [a,b],
then

G = [ " f(tya

calculates the area under
the graph of y = f(t) as
x varies over an interval
[a, b] starting from a.
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Fundamental Question: Is G differentiable and what is G’ (x)?



Integral Functions: An Example

Example:
Let f(t) = 2t on [0, 3].

Find a formula for

G(z) = /: 2 dt.

G(z)=/Z 2tdt
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Integral Functions: An Example

Case 1:

If x = 0, we have that
0
G(0) :/ 2tdt = 0
(0]

since the limits of integration are identical. (There is no area to calculate.)

Thus we have the area under f(t) on the interval [0, 0] is 0 and

G(0) = 0.



Integral Functions: An Example

Case 2:

Area
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Integral Functions: An Example

Case 3:
Area = G(2)
o
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Integral Functions: An Example

Case 4: 6 (3,6)

Area = G(3)
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Integral Functions: An Example

z | G(x)
1 1
2 4
3 9
z | z2

Key Observation: The pattern suggests that

G(:c):/0 2t dt = x?



Integral Functions: An Example

Case 5:
Area = G(x) (x, 2x)
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Integral Functions: An Example

Important Observation:
Notice that if f(¢) = 2t on [0, 3] and if
T
G@) = | fe)dt,
JO

then
G(x) = z?

and the derivative of G is

G'(z) = 2.

This means that

¢@ = [ 1w =1
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