Differentiation of an Integral Function

Created by

Barbara Forrest and Brian Forrest

Integral Functions

Remark:
Assume that the function f is continuous on an interval $[a, b]$. Define the integral function G on $[a, b]$ by

$$
G(x)=\int_{a}^{x} f(t) d t
$$

Questions:

What are the properties of G ?
Is it continuous?
Is it differentiable?
If so what is $G^{\prime}(x)$?

Integral Functions

Note: If $f \geq 0$ on $[a, b]$, then

$$
G(x)=\int_{a}^{x} f(t) d t
$$

calculates the area under the graph of $y=f(t)$ as x varies over an interval $[a, b]$ starting from a.

Fundamental Question: Is G differentiable and what is $G^{\prime}(x)$?

Integral Functions: An Example

Example:

Let $f(t)=2 t$ on $[0,3]$.
Find a formula for

$$
G(x)=\int_{0}^{x} 2 t d t
$$

Integral Functions: An Example

Case 1:

If $x=0$, we have that

$$
G(0)=\int_{0}^{0} 2 t d t=0
$$

since the limits of integration are identical. (There is no area to calculate.)

Thus we have the area under $f(t)$ on the interval $[0,0]$ is 0 and

$$
G(0)=0
$$

Integral Functions: An Example

Case 2:

$$
\begin{aligned}
\text { Area } & =G(1) \\
& =\int_{0}^{1} 2 t d t \\
& =\frac{1}{2} \times \text { base } \times \text { height } \\
& =\frac{1}{2}(1)(2(1)) \\
& =1
\end{aligned}
$$

Integral Functions: An Example

Case 3:

$$
\begin{aligned}
\text { Area } & =G(2) \\
& =\int_{0}^{2} 2 t d t \\
& =\frac{1}{2} \times \text { base } \times \text { height } \\
& =\frac{1}{2}(2)(2(2)) \\
& =4
\end{aligned}
$$

Integral Functions: An Example

Case 4:

$$
\begin{aligned}
\text { Area } & =G(3) \\
& =\int_{0}^{3} 2 t d t \\
& =\frac{1}{2} \times \text { base } \times \text { height } \\
& =\frac{1}{2}(3)(2(3)) \\
& =9
\end{aligned}
$$

Integral Functions: An Example

x	$G(x)$
1	1
2	4
3	9
\vdots	\vdots
x	x^{2}

Key Observation: The pattern suggests that

$$
G(x)=\int_{0}^{x} 2 t d t=x^{2}
$$

Integral Functions: An Example

Case 5:

$$
\begin{aligned}
\text { Area } & =G(x) \\
& =\int_{0}^{x} 2 t d t \\
& =\frac{1}{2} \times \text { base } \times \text { height } \\
& =\frac{1}{2}(x)(2(x)) \\
& =x^{2}
\end{aligned}
$$

Integral Functions: An Example

Important Observation:

Notice that if $f(t)=2 t$ on $[0,3]$ and if

$$
G(x)=\int_{0}^{x} f(t) d t
$$

then

$$
G(x)=x^{2}
$$

and the derivative of G is

$$
G^{\prime}(x)=2 x
$$

This means that

$$
G^{\prime}(x)=\frac{d}{d x} \int_{0}^{x} f(t) d t=f(x)
$$

