Fundamental Theorem of Calculus (Part 2)

Created by

Barbara Forrest and Brian Forrest

Fundamental Theorem of Calculus (Part 2)

Example: Evaluate

$$
\int_{0}^{2} t^{3} d t
$$

Observation: If

$$
G(x)=\int_{0}^{x} t^{3} d t
$$

then

$$
G(2)=\int_{0}^{2} t^{3} d t
$$

We know from the FTC1 that

$$
G^{\prime}(x)=x^{3}
$$

so G is an antiderivative of x^{3}. Hence there exists a constant C such that

$$
G(x)=\int_{0}^{x} t^{3} d t=\frac{x^{4}}{4}+C .
$$

Question: How does this help us?

Fundamental Theorem of Calculus (Part 2)

Note: We have just seen that

$$
G(x)=\int_{0}^{x} t^{3} d t=\frac{x^{4}}{4}+C
$$

for some constant $C \in \mathbb{R}$.
However, we also know that

$$
0=\int_{0}^{0} t^{3} d t=G(0)=\frac{0^{4}}{4}+C=C
$$

so

$$
G(x)=\int_{0}^{x} t^{3} d t=\frac{x^{4}}{4}
$$

Finally,

$$
\int_{0}^{2} t^{3} d t=G(2)=\frac{2^{4}}{4}=4
$$

Question: Did we really need to find C ?

Fundamental Theorem of Calculus (Part 2)

Key Observation:
Let \boldsymbol{F} and G be any two antiderivatives of the same function f. Then

$$
G(x)=F(x)+C .
$$

Let $a, b \in \mathbb{R}$. Then

$$
\begin{aligned}
G(b)-G(a) & =(F(b)+C)-(F(a)+C) \\
& =F(b)-F(a)
\end{aligned}
$$

Fundamental Theorem of Calculus (Part 2)

Key Observation (continued):
Assume that f is continuous and that we want to know

$$
\int_{a}^{b} f(t) d t .
$$

Let

$$
G(x)=\int_{a}^{x} f(t) d t
$$

Then G is an antiderivative of f and if \boldsymbol{F} is any other antiderivative of f, then

$$
\begin{aligned}
\int_{a}^{b} f(t) d t & =G(b) \\
& =G(b)-G(a) \quad(\text { since } G(a)=0) \\
& =F(b)-F(a)
\end{aligned}
$$

Fundamental Theorem of Calculus (Part 2)

Example: Evaluate

$$
\int_{0}^{2} t^{3} d t
$$

Solution: We know that

$$
F(x)=\frac{x^{4}}{4}
$$

is an antiderivative for $f(x)=x^{3}$.
Hence

$$
\begin{aligned}
\int_{0}^{2} t^{3} d t & =F(2)-F(0) \\
& =\frac{2^{4}}{4}-\frac{0^{4}}{4} \\
& =4
\end{aligned}
$$

Fundamental Theorem of Calculus (Part 2)

Theorem: [Fundamental Theorem of Calculus (Part 2) [FTC2]]
Assume that f is continuous and that \boldsymbol{F} is any antiderivative of f. Then

$$
\int_{a}^{b} f(t) d t=F(b)-F(a) .
$$

Notation: We write

$$
\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

Fundamental Theorem of Calculus (Part 2)

Example: Evaluate

$$
\int_{0}^{\pi} \sin (t) d t
$$

Solution: Since $f(t)=\sin (t)$ is continuous and $F(t)=-\cos (t)$ is an antiderivative of f, by the FTC2, we have

$$
\begin{aligned}
\int_{0}^{\pi} \sin (t) d t & =-\left.\cos (t)\right|_{0} ^{\pi} \\
& =-\cos (\pi)-(-\cos (0)) \\
& =2
\end{aligned}
$$

Fundamental Theorem of Calculus (Part 2)

Example: Evaluate

$$
\int_{-\pi}^{\pi} \sin (t) d t
$$

Solution: Using a geometrical argument, this integral should equal $\mathbf{0}$.

$$
\begin{aligned}
\int_{-\pi}^{\pi} \sin (t) d t & =-\left.\cos (t)\right|_{-\pi} ^{\pi} \\
& =-\cos (\pi)-(-\cos (-\pi)) \\
& =0
\end{aligned}
$$

Fundamental Theorem of Calculus (Part 2)

Key Remark: It is important that we emphasize the difference between the meaning of

$$
\int_{a}^{b} f(t) d t \quad \text { and } \quad \int f(t) d t
$$

The first expression,

$$
\int_{a}^{b} f(t) d t
$$

is called a definite integral. It represents a number that is defined as a limit of Riemann sums.

The second expression,

$$
\int f(t) d t
$$

is called an indefinite integral. It represents the family of all functions that are antiderivatives of the given function f.

