# Fundamental Theorem of Calculus (Part 1) 

Created by

Barbara Forrest and Brian Forrest

## Differentiation of Integral Functions

Important Observation: Notice that if $f(t)=2 t$ on $[0,3]$ and if

$$
G(x)=\int_{0}^{x} f(t) d t
$$

then

$$
G(x)=x^{2}
$$

and the derivative of $G$ is

$$
G^{\prime}(x)=2 x
$$

This means that

$$
G^{\prime}(x)=\frac{d}{d x} \int_{0}^{x} f(t) d t=f(x)
$$

Fundamental Question: Does (*) hold for all integral functions?

## Differentiation of Integral Functions



Special Case: Assume that $f(t) \geq 0$ and that $f$ is continuous on the interval $[a, b]$ and let the integral function be defined by

$$
G(x)=\int_{a}^{x} f(t) d t
$$

In this case, $G(x)$ represents the area bounded by the graph of $f$, the $t$-axis, and the lines $t=a$ and $t=x$.

## Differentiation of Integral Functions



Note: For a small $\boldsymbol{h}>\mathbf{0}$

$$
G(x+h)-G(x)=
$$

## Differentiation of Integral Functions



Note: For a small $h>0$

$$
G(x+h)-G(x)=\int_{x}^{x+h} f(t) d t=
$$

## Differentiation of Integral Functions



Note: For a small $h>0$

$$
G(x+h)-G(x)=\int_{x}^{x+h} f(t) d t=f(c) h
$$

## Differentiation of Integral Functions

Remark: When $h>0$ is small there exists a $c$ with $x<c<x+h$ such that

$$
G(x+h)-G(x)=f(c) h
$$

and hence

$$
\frac{G(x+h)-G(x)}{h}=f(c) .
$$

However, if $h$ is very small, then $c$ must also be very close to $x$. Since $f$ is continuous, this means that

$$
f(c)=\frac{G(x+h)-G(x)}{h}
$$

must be very close to $f(x)$.
We get

$$
\lim _{h \rightarrow 0^{+}} \frac{G(x+h)-G(x)}{h}=\lim _{c \rightarrow x^{+}} f(c)=f(x)
$$

## Fundamental Theorem of Calculus (Part 1)

Theorem: [Fundamental Theorem of Calculus (Part 1) [FTC1]]
Assume that $f$ is continuous on an open interval $I$ containing a point $\boldsymbol{a}$. Let

$$
G(x)=\int_{a}^{x} f(t) d t
$$

Then $G(x)$ is differentiable at each $x \in I$ and

$$
G^{\prime}(x)=f(x) .
$$

Equivalently,

$$
G^{\prime}(x)=\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

## Fundamental Theorem of Calculus (Part 1)

Proof of the FTC1: Assume that

$$
G(x)=\int_{a}^{x} f(t) d t
$$

and that $f$ is continuous at $x_{0} \in I$. Let $\epsilon>0$. Then there exists a $\delta>0$ so that if $0<\left|c-x_{0}\right|<\delta$, then

$$
\left|f(c)-f\left(x_{0}\right)\right|<\epsilon
$$

If $0<\left|x-x_{0}\right|<\delta$, then

$$
\begin{aligned}
\frac{G(x)-G\left(x_{0}\right)}{x-x_{0}} & =\frac{\int_{a}^{x} f(t) d t-\int_{a}^{x_{0}} f(t) d t}{x-x_{0}} \\
& =\frac{1}{x-x_{0}} \int_{x_{0}}^{x} f(t) d t
\end{aligned}
$$

By the Average Value Theorem, there exists a $c$ between $x$ and $x_{0}$ with

$$
f(c)=\frac{1}{x-x_{0}} \int_{x_{0}}^{x} f(t) d t
$$

## Fundamental Theorem of Calculus (Part 1)

Proof of the FTC1 (continued):

$$
\begin{aligned}
& \text { If } 0<\left|x-x_{0}\right|<\delta \text {, then since } 0<\left|c-x_{0}\right|<\delta \text {, } \\
& \qquad\left|\frac{G(x)-G\left(x_{0}\right)}{x-x_{0}}-f\left(x_{0}\right)\right|=\left|f(c)-f\left(x_{0}\right)\right|<\epsilon .
\end{aligned}
$$

By the definition of a limit we get that

$$
\begin{aligned}
G^{\prime}\left(x_{0}\right) & =\lim _{x \rightarrow x_{0}} \frac{G(x)-G\left(x_{0}\right)}{x-x_{0}} \\
& =f\left(x_{0}\right)
\end{aligned}
$$

## Fundamental Theorem of Calculus (Part 1)



Example: Assume that a vehicle travels forward along a straight road with a velocity at time $t$ given by the function $v(t)$. If we fix a starting point at $t=0$, then the displacement $s(x)$ up to time $t=x$ is

$$
s(x)=\int_{0}^{x} v(t) d t
$$

## Fundamental Theorem of Calculus (Part 1)



Example: Assume that a vehicle travels forward along a straight road with a velocity at time $t$ given by the function $v(t)$. If we fix a starting point at $t=0$, then the displacement $s(x)$ up to time $t=x$ is

$$
s(x)=\int_{0}^{x} v(t) d t
$$

Since velocity is a continuous function of time, the FTC1 tells us that $s(x)$ is differentiable and that the derivative of displacement is velocity

$$
s^{\prime}(x)=v(x)
$$

exactly as we would expect!

