Displacement versus Velocity

Created by

Barbara Forrest and Brian Forrest

Displacement versus Velocity

Recall:

We know that if $s(t)$ represents the displacement of an object and $v(t)$ represents its velocity, then

$$
\frac{d s}{d t}=s^{\prime}(t)=v(t)
$$

Problem:

Suppose that a car travels for two hours along a highway. The odometer is broken but the speedometer is working. How can we determine the distance traveled from only the data about the car's velocity?

Displacement versus Velocity

Step 1: Suppose that we always travel forward on the highway at a constant velocity of $90 \mathrm{~km} / \mathrm{hr}$. If $s=$ displacement, $\boldsymbol{v}=$ velocity, and $\Delta t=$ time elapsed, then

$$
s=v \Delta t
$$

Key Observation: In this case, displacement equals the area under the graph of v from $t=0$ to $t=2$.

Displacement versus Velocity

Step 2: Divide the 2 hour duration of the trip into 120 one minute intervals

$$
0=t_{0}<t_{1}<t_{2}<t_{3}<\cdots<t_{i-1}<t_{i}<\cdots<t_{120}=2 \text { hours }
$$

so that $t_{i}=\frac{2 i}{120}=\frac{i}{60}$ hours.
Let s_{i} be the displacement (distance traveled) during time t_{i-1} until t_{i}, the i-th minute of the trip.

If s is the total displacement, we have

$$
\begin{aligned}
s & =s_{1}+s_{2}+s_{3}+\cdots+s_{i}+\cdots+s_{120} \\
& =\sum_{i=1}^{120} s_{i}
\end{aligned}
$$

Displacement versus Velocity

Step 2 (continued): If we assume that the velocity does not vary much over any one minute period, we can assume that the velocity during the interval $\left[t_{i-1}, t_{i}\right]$ was the same as it was at t_{i} so that

$$
s_{i} \cong v\left(t_{i}\right) \Delta t_{i}=v\left(t_{i}\right) \frac{2}{120}
$$

Then we have the estimate for s :

$$
s=\sum_{i=1}^{120} s_{i} \cong \sum_{i=1}^{120} v\left(t_{i}\right) \Delta t_{i}=\sum_{i=1}^{120} v\left(t_{i}\right) \frac{2}{120}
$$

Displacement versus Velocity

Step 3: Divide the two hour period into 7200 subintervals each of length 1 second to get

$$
s_{i} \cong v\left(t_{i}\right) \Delta t_{i}=v\left(t_{i}\right) \frac{2}{7200}
$$

and

$$
s=\sum_{i=1}^{7200} s_{i} \cong \sum_{i=1}^{7200} v\left(t_{i}\right) \Delta t_{i}=\sum_{i=1}^{7200} v\left(t_{i}\right) \frac{2}{7200}
$$

Displacement versus Velocity

Step 4: Divide the two hour period into n subintervals each of length $\frac{2}{n}$ hours with $t_{i}=\frac{2 i}{n}$ to get

$$
s_{i} \cong v\left(t_{i}\right) \Delta t_{i}=v\left(t_{i}\right) \frac{2}{n}
$$

and

$$
s=\sum_{i=1}^{n} s_{i} \cong S_{n}=\sum_{i=1}^{n} v\left(t_{i}\right) \Delta t_{i}=\sum_{i=1}^{n} v\left(t_{i}\right) \frac{2}{n} .
$$

Displacement versus Velocity

Step 5: With

$$
S_{n}=\sum_{i=1}^{n} v\left(t_{i}\right) \Delta t_{i}=\sum_{i=1}^{n} v\left(t_{i}\right) \frac{2}{n}
$$

it can be shown that the sequence $\left\{S_{n}\right\}$ converges and that

$$
\lim _{n \rightarrow \infty}\left\{S_{n}\right\}=s
$$

Geometric Interpretation: Displacement versus Velocity

Conclusion: Displacement is the area under the velocity graph!

