Created by

Barbara Forrest and Brian Forrest

If $\{S_n\}$ is any sequence of Riemann sums for $P^{(n)}$, then

$$L_n \leq S_n \leq R_n \Rightarrow \lim_{n \to \infty} S_n = \frac{1}{3}$$

Definition: [Definite Integral]

We say that a bounded function f is *integrable* on [a, b] if there exists a unique number $I \in \mathbb{R}$ such that if whenever $\{P_n\}$ is a sequence of partitions with $\lim_{n \to \infty} ||P_n|| = 0$ and $\{S_n\}$ is any sequence of Riemann sums associated with the P_n 's, we have

$$\lim_{n\to\infty}S_n=I$$

In this case, we call I the integral of f over [a, b] and denote it by

$$\int_a^b f(t) \ dt$$

The points a and b are called the *limits of integration* and the function f(t) is called the *integrand*. The variable t is called the *variable of integration*.

Note: The variable of integration is sometimes called a *dummy variable* in the sense that if we were to replace t's by x's everywhere, we would not change the value of the integral.

Question: Are all bounded functions on [a, b] integrable?

Answer: No. Let

$$f(x) = egin{cases} 1 & ext{if } x \in \mathbb{Q}, \ -1 & ext{if } x
ot\in \mathbb{Q}. \end{cases}$$

Then f is not integrable on any interval [a, b].

The Integrability Theorem

Theorem: [The Integrability Theorem for Continuous Functions]

Let f be continuous on [a, b]. Then f is integrable on [a, b]. Moreover,

$$\int_{a}^{b} f(t) \, dt = \lim_{n \to \infty} S_n$$

where

$$S_n = \sum_{i=1}^n f(c_i) \Delta t_i$$

is any Riemann sum associated with the regular n-partitions. In particular,

$$\int_{a}^{b} f(t) dt = \lim_{n \to \infty} R_n = \lim_{n \to \infty} \sum_{i=1}^{n} f(t_i) \frac{b-a}{n}$$

and

$$\int_{a}^{b} f(t) dt = \lim_{n \to \infty} L_n = \lim_{n \to \infty} \sum_{i=1}^{n} f(t_{i-1}) \frac{b-a}{n}$$

The Integrability Theorem

Integrating Constant Functions

Example:

Since $R_n = lpha(b-a)$ for each n, $\int_a^b lpha \ dt = lpha(b-a).$

Properties of Definite Integrals

Theorem: [Properties of Definite Integrals]

Assume that f and g are integrable on the interval [a, b]. Then

- i) For any $c \in \mathbb{R}, \int_a^b c f(t) dt = c \int_a^b f(t) dt$
- ii) $\int_a^b (f+g)(t) dt = \int_a^b f(t) dt + \int_a^b g(t) dt$ iii) If $m \le f(t) \le M$ for all $t \in [a, b]$, then

$$m(b-a) \leq \int_{a}^{b} f(t) dt \leq M(b-a)$$

- iv) If $0 \leq f(t)$ for all $t \in [a, b]$, then $0 \leq \int_a^b f(t) \ dt$.
- v) If $g(t) \leq f(t)$ for all $t \in [a, b]$, then $\int_a^b g(t) dt \leq \int_a^b f(t) dt$. vi) The function |f| is integrable on [a, b] and

$$\left|\int_{a}^{b} f(t) \, dt\right| \leq \int_{a}^{b} |f(t)| \, dt$$

Properties of Definite Integrals

Proof of (iii): Assume that

$$m \le f(t) \le M$$

for all $t \in [a, b]$. Let

$$a = t_0 < t_1 < t_2 < \dots < t_{i-1} < t_i < \dots < t_{n-1} < t_n = b$$

be any partition of [a, b]. Then

$$m(b-a) = \sum_{i=1}^{n} m\Delta t_i \le \sum_{i=1}^{n} f(t_i)\Delta t_i \le \sum_{i=1}^{n} M\Delta t_i = M(b-a)$$

since

$$\sum_{i=1}^{n} \Delta t_i = b - a.$$