Change of Variables for the Definite Integral

Created by

Barbara Forrest and Brian Forrest

Change of Variables for the Indefinite Integral

Recall:

Definition: [Change of Variables Formula]
Let $u=g(x)$ be differentiable. Then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

Question: How does the Change of Variables formula work with

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x ?
$$

Change of Variables for the Definite Integral

Key Observation: Suppose that we want to evaluate

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x
$$

where f and g^{\prime} are continuous functions.
We know that if $\boldsymbol{h}(\boldsymbol{u})$ is an antiderivative of $\boldsymbol{f}(\boldsymbol{u})$, then

$$
H(x)=h(g(x))
$$

is an antiderivative of

$$
f(g(x)) g^{\prime}(x)
$$

This means that we can apply the Fundamental Theorem of Calculus Part 2 to get

$$
\begin{aligned}
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x & =H(b)-H(a) \\
& =h(g(b))-h(g(a)) \\
& =\int_{g(a)}^{g(b)} f(u) d u
\end{aligned}
$$

Change of Variables for the Definite Integral

Theorem: [Change of Variables]
Assume that $g^{\prime}(x)$ is continuous on $[a, b]$ and $f(u)$ is continuous on $g([a, b])$, then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
$$

Change of Variables for the Definite Integral

Theorem: [Change of Variables]

Assume that $g^{\prime}(x)$ is continuous on $[a, b]$ and $f(u)$ is continuous on $g([a, b])$, then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u .
$$

Note: We will often write

$$
\int_{x=a}^{x=b} f(g(x)) g^{\prime}(x) d x=\int_{u=g(a)}^{u=g(b)} f(u) d u
$$

to emphasize which limits of integration correspond to each variable.

Change of Variables for the Definite Integral

Example: Evaluate $\int_{2}^{4}(5 x-6)^{3} d x$.
Solution: Let $u=g(x)=5 x-6$. Then

$$
d u=g^{\prime}(x) d x=5 d x
$$

and we have

$$
\frac{1}{5} d u=d x
$$

The Change of Variables Theorem shows us that

$$
\int_{2}^{4}(5 x-6)^{3} d x=\int_{u=g(2)}^{u=g(4)} u^{3} \frac{1}{5} d u
$$

Change of Variables for the Definite Integral

Example (continued):

Now since

$$
g(a)=g(2)=5(2)-6=4 \text { and } g(b)=g(4)=5(4)-6=14
$$

we have

$$
\begin{aligned}
\int_{2}^{4}(5 x-6)^{3} d x & =\frac{1}{5} \int_{4}^{14} u^{3} d u \\
& =\left.\frac{1}{5}\left(\frac{1}{4} u^{4}\right)\right|_{4} ^{14} \\
& =\frac{1}{20}\left(14^{4}-4^{4}\right) \\
& =1908
\end{aligned}
$$

Change of Variables for the Definite Integral

Example: Evaluate $\int_{0}^{1} \frac{x d x}{\sqrt{x^{2}+1}}$.
Let $u=g(x)=x^{2}+1$. Then

$$
d u=g^{\prime}(x) d x=2 x d x
$$

The Change of Variables Theorem shows us that

$$
\begin{aligned}
\int_{0}^{1} \frac{x d x}{\sqrt{x^{2}+1}} & =\int_{u=g(0)}^{u=g(1)}\left(u^{-\frac{1}{2}}\right)\left(\frac{1}{2} d u\right) \\
& =\frac{1}{2} \int_{1}^{2} u^{-\frac{1}{2}} d u \\
& =\left.\frac{1}{2}\left(2 u^{\frac{1}{2}}\right)\right|_{1} ^{2} \\
& =2^{\frac{1}{2}}-1^{\frac{1}{2}} \\
& =\sqrt{2}-1
\end{aligned}
$$

Change of Variables for the Definite Integral

Example: Evaluate $\int_{0}^{\frac{\pi}{4}}-2 \cos ^{2}(2 x) \sin (2 x) d x$.
Let $u=g(x)=\cos (2 x)$ and $f(u)=u^{2}$. Then since

$$
d u=g^{\prime}(x) d x=-2 \sin (2 x) d x
$$

the Change of Variables Theorem shows us that

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}}-2 \cos ^{2}(2 x) \sin (2 x) d x & =\int_{\cos (2(0))}^{\cos \left(2\left(\frac{\pi}{4}\right)\right)} u^{2} d u \\
& =\int_{\cos (0)}^{\cos \left(\frac{\pi}{2}\right)} u^{2} d u \\
& =\int_{1}^{0} u^{2} d u \\
& =\left.\frac{u^{3}}{3}\right|_{1} ^{0} \\
& =\frac{0^{3}}{3}-\frac{1^{3}}{3}=-\frac{1}{3}
\end{aligned}
$$

