Change of Variables for the Indefinite Integral

Created by

Barbara Forrest and Brian Forrest

Change of Variables for the Indefinite Integral

Remark:

We have seen that antiderivatives are very useful in evaluating definite integrals.

Key Problem:

Are there methods to find antiderivatives of complicated functions?

Antiderivatives and the Chain Rule

Recall: The Chain Rule tells us that if

$$
H(x)=f(g(x)),
$$

then

$$
H^{\prime}(x)=\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Question: Is there a method to undo the Chain Rule?

Change of Variables for the Indefinite Integral

Remark: Assume we have two functions h and f with

$$
h^{\prime}(u)=f(u)
$$

Then

$$
\int f(u) d u=h(u)+C
$$

Let $u=\boldsymbol{g}(\boldsymbol{x})$ be a function of \boldsymbol{x}. The Chain Rule says that if

$$
H(x)=h(g(x))
$$

then

$$
\begin{aligned}
H^{\prime}(x) & =h^{\prime}(g(x)) g^{\prime}(x) \\
& =f(g(x)) g^{\prime}(x)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\int f(g(x)) g^{\prime}(x) d x & =H(x)+C \\
& =h(g(x))+C \\
& =h(u)+C \\
& =\int f(u) d u
\end{aligned}
$$

Change of Variables for the Indefinite Integral

Definition: [Change of Variables Formula]

Let $u=g(x)$ be differentiable. Then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

Notation: We will use the notation

$$
\left.h(u)\right|_{u=g(x)}
$$

to mean replace u by $g(x)$ in the formula for $h(u)$.
As such the symbol

$$
\left.\int f(u) d u\right|_{u=g(x)}
$$

means replace u by $g(x)$ once the antiderivative has been found.

Method of Substitution

Method of Substitution: Evaluate $\int 2 x e^{x^{2}} d x$.
Solution: Let $u=g(x)=x^{2}$, then $g^{\prime}(x)=2 x$. If we also let $f(u)=e^{u}$, then

$$
\int 2 x e^{x^{2}} d x=\int f(g(x)) g^{\prime}(x) d x
$$

We get that

$$
\begin{aligned}
\int 2 x e^{x^{2}} d x & =\int f(g(x)) g^{\prime}(x) d x \\
& =\left.\int f(u) d u\right|_{u=g(x)} \\
& =\left.\int e^{u} d u\right|_{u=x^{2}} \\
& =\left.e^{u}\right|_{u=x^{2}}+C \\
& =e^{x^{2}}+C
\end{aligned}
$$

Method of Substitution

Method of Substitution (continued):

1) Start with

$$
\int f(g(x)) g^{\prime}(x) d x
$$

2) Identify the possible substitution

$$
u=g(x)
$$

3) Differentiating both sides gives us

$$
\frac{d u}{d x}=g^{\prime}(x)
$$

4) If we treat $d u$ and $d x$ as if they were "numbers", then

$$
d u=g^{\prime}(x) d x
$$

We can now substitute \boldsymbol{u} for $\boldsymbol{g}(\boldsymbol{x})$ and $\boldsymbol{d u}$ for $\boldsymbol{g}^{\prime}(\boldsymbol{x}) \boldsymbol{d x}$ to get

$$
\int f(g(x)) g^{\prime}(x) d x=\left.\int f(u) d u\right|_{u=g(x)}
$$

which is the Change of Variables formula.

Method of Substitution

Example: Evaluate $\int \frac{2 x}{1+x^{2}} d x$ by making the substitution $u=1+x^{2}$.
If

$$
u=1+x^{2}
$$

then

$$
d u=2 x d x
$$

Substituting $u=1+x^{2}$ and $d u=2 x d x$ into the original integral gives us

$$
\int \frac{2 x}{1+x^{2}} d x=\left.\int \frac{1}{u} d u\right|_{u=1+x^{2}}
$$

but

$$
\int \frac{1}{u} d u=\ln (|u|)+C
$$

Hence

$$
\begin{aligned}
\int \frac{2 x}{1+x^{2}} d x & =\left.\int \frac{1}{u} d u\right|_{u=1+x^{2}} \\
& =\left.\ln (|u|)\right|_{u=1+x^{2}}+C \\
& =\ln \left(\left|1+x^{2}\right|\right)+C
\end{aligned}
$$

