Average Value of a Function

Created by

Barbara Forrest and Brian Forrest

Remark:

We know that the average of n real numbers $\alpha_1, \alpha_2, \ldots, \alpha_n$ is

```
\alpha_1 + \alpha_2 + \ldots + \alpha_n
```

 \boldsymbol{n}

Question:

How do you find the average value of a continuous function f on [a, b]?

Method 1: Sampling

Method 1: Sampling

One approach would be to take sample values of f and calculate the average of these samples as an estimate of the average value. To obtain the sample, we use the regular n-partition

$$a = t_0 < t_1 < \cdots < t_{n-1} < t_n = b$$

where $t_i = a + rac{i(b-a)}{n}$ and consider $\sum\limits_{\substack{i=1\\n}}^n f(t_i)$

To get better estimates we let $n \to \infty$.

Method 1: Sampling

Definition: [Average Value of a Function]

If f is continuous on [a, b], the average value of f on [a, b] is defined as

$$\frac{1}{b-a}\int_a^b f(t) \ dt.$$

Geometric Interpretation of the Average Value

Method 2: Geometric Interpretation

If f is continuous on [a, b], then the *Extreme Value Theorem* implies that there exists $d_1, d_2 \in [a, b]$ with $m = f(d_1), M = f(d_2)$ such that

 $m \leq f(x) \leq M$

for all $x \in [a, b]$.

Geometric Interpretation of the Average Value

Method 2: Geometric Interpretation (continued)

Since f is continuous and

$$m \leq \alpha = \frac{1}{b-a} \int_a^b f(x) \, dx \leq M$$

the Intermediate Value Theorem shows that there exists a < c < b so that

$$f(c) = \frac{1}{b-a} \int_a^b f(x) \, dx.$$

Geometrically, it follows that

$$Area R_1 + Area R_3 = Area R_2.$$

Theorem:

[The Average Value Theorem (Mean Value Theorem for Integrals)]

Assume that f is continuous on [a, b]. Then there exists $a \leq c \leq b$ such that

$$f(c) = \frac{1}{b-a} \int_a^b f(t) \, dt.$$

Key Fact: If b < a and f is continuous on [b, a], then there exists $b \le c \le a$ such that

$$f(c) = \frac{1}{a-b} \int_{b}^{a} f(t) dt$$
$$= \frac{1}{a-b} \left(-\int_{a}^{b} f(t) dt \right)$$
$$= \frac{1}{b-a} \int_{a}^{b} f(t) dt$$

so the Average Value Theorem holds even if b < a.

Remark: Average values play a crucial role in probability and statistics.