Average Value of a Function

Created by

Barbara Forrest and Brian Forrest

Average Value of a Function

Remark:
We know that the average of n real numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ is

$$
\frac{\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}}{n}
$$

Question:

How do you find the average value of a continuous function f on $[a, b]$?

Method 1: Sampling

Method 1: Sampling

One approach would be to take sample values of f and calculate the average of these samples as an estimate of the average value. To obtain the sample, we use the regular n-partition

$$
a=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=b
$$

where $t_{i}=a+\frac{i(b-a)}{n}$ and consider

$$
\frac{\sum_{i=1}^{n} f\left(t_{i}\right)}{n}
$$

To get better estimates we let $n \rightarrow \infty$.

Method 1: Sampling

Key Observation:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} f\left(t_{i}\right)}{n} & =\lim _{n \rightarrow \infty} \frac{1}{b-a} \sum_{i=1}^{n} f\left(t_{i}\right) \frac{(b-a)}{n} \\
& =\frac{1}{b-a} \lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(t_{i}\right) \frac{(b-a)}{n} \\
& =\frac{1}{b-a} \lim _{n \rightarrow \infty} R_{n} \\
& =\frac{1}{b-a} \int_{a}^{b} f(t) d t
\end{aligned}
$$

Method 1: Sampling

Definition: [Average Value of a Function]
If f is continuous on $[a, b]$, the average value of f on $[a, b]$ is defined as

$$
\frac{1}{b-a} \int_{a}^{b} f(t) d t
$$

Geometric Interpretation of the Average Value

Method 2: Geometric Interpretation
If f is continuous on $[a, b]$, then the Extreme Value Theorem implies that there exists $d_{1}, d_{2} \in[a, b]$ with $m=f\left(d_{1}\right), M=f\left(d_{2}\right)$ such that

$$
m \leq f(x) \leq M
$$

for all $x \in[a, b]$.

Geometric Interpretation of the Average Value

Method 2: Geometric Interpretation (continued)
Since f is continuous and

$$
m \leq \alpha=\frac{1}{b-a} \int_{a}^{b} f(x) d x \leq M
$$

the Intermediate Value Theorem shows that there exists $a<c<b$ so that

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Geometrically, it follows that

$$
\text { Area } R_{1}+\text { Area } R_{3}=\text { Area } R_{2}
$$

Average Value Theorem

Theorem:
[The Average Value Theorem (Mean Value Theorem for Integrals)]
Assume that f is continuous on $[a, b]$. Then there exists $a \leq c \leq b$ such that

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(t) d t
$$

Average Value Theorem

Key Fact: If $b<a$ and f is continuous on $[b, a]$, then there exists $b \leq c \leq a$ such that

$$
\begin{aligned}
f(c) & =\frac{1}{a-b} \int_{b}^{a} f(t) d t \\
& =\frac{1}{a-b}\left(-\int_{a}^{b} f(t) d t\right) \\
& =\frac{1}{b-a} \int_{a}^{b} f(t) d t
\end{aligned}
$$

so the Average Value Theorem holds even if $b<a$.
Remark: Average values play a crucial role in probability and statistics.

