Created by

Barbara Forrest and Brian Forrest

Taylor Polynomials

Definition: [Taylor Polynomials]

Assume that f(x) is *n*-times differentiable at x = a. The *n*-th degree Taylor polynomial for f(x) centered at x = a is the polynomial

$$T_{n,a}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k}$$

= $f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^{2} + \cdots + \frac{f^{(n)}(a)}{n!} (x-a)^{n}$

Observation: We have seen that for functions f(x) such as $\cos(x)$, $\sin(x)$ and e^x , that

$$T_{n,a}(x) \cong f(x)$$

near x = a.

Definition: [Taylor Remainder]

Assume that f(x) is *n* times differentiable at x = a. Let

$$R_{n,a}(x) = f(x) - T_{n,a}(x).$$

 $R_{n,a}(x)$ is called the *n*-th degree Taylor remainder function centered at x = a.

Note: The error in using a Taylor Polynomial to approximate f(x) is given by

Error
$$=\mid R_{n,a}(x)\mid$$
 .

Central Problem: Given a function f(x) and a point x = a, how do we estimate the size of the Taylor Remainder $R_{n,a}(x)$?

Theorem: [Taylor's Theorem]

Assume that f(x) is n + 1-times differentiable on an interval I containing x = a. Let $x \in I$. Then there exists a point c between x and a such that

$$f(x) - T_{n,a}(x) = R_{n,a}(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}.$$

Remarks:

1) Since
$$T_{0,a}(x) = f(a)$$
, when $n = 0$

$$f(x) - T_{0,a}(x) = f(x) - f(a) = f'(c)(x - a)$$

which is the Mean Value Theorem.

2) Since $T_{1,a}(x) = L_a^f(x)$,

$$|f(x) - L_a^f(x)| = |R_{1,a}(x)| = \frac{|f''(c)|}{2}(x-a)^2$$

is the error in using the linear approximation.

Remarks (continued):

3) Taylor's Theorem does not tell us how to find the point c, only that it exists. Therefore, to estimate $R_{n,a}(x)$ we must first estimate how large $|f^{(n+1)}(c)|$ could be without knowing the value of c.

Example: Use linear approximation to estimate $\sin(.01)$ and show that the error in using this approximation is less than 10^{-4} .

Solution: We know that $f(0) = \sin(0) = 0$ and that $f'(0) = \cos(0) = 1$, so

$$L_0(x) = T_{1,0}(x) = x.$$

Therefore,

$$\sin(.01) \cong L_0(.01) = .01$$

Since $f(x) = \sin(x)$, $f'(x) = \cos(x)$, and $f''(x) = -\sin(x)$, Taylor's Theorem guarantees that there exists some *c* between 0 and .01 such that the error in the linear approximation is given by

$$egin{array}{rcl} |R_{1,0}(.01)| &=& \left|rac{f^{\,\prime\prime}(c)}{2}(.01-0)^2
ight| \ &=& \left|rac{-\sin(c)}{2}(.01)^2
ight| \ &\leq& rac{(.01)^2}{2} \end{array}$$

since $|-\sin(c)| \leq 1$.

Remark: For $f(x) = \sin(x)$, we saw that

$$L_0(x) = T_{1,0}(x) = x$$

However, since $f''(0) = -\sin(0) = 0$, we also have

$$L_0(x) = T_{1,0}(x) = T_{2,0}(x)$$

so there exists a c between 0 and .01 such that

$$|\sin(.01) - .01| = |R_{2,0}(.01)|$$

= $\left|\frac{f'''(c)}{6}(.01 - 0)^3\right|$
= $\left|\frac{-\cos(c)}{6}(.01)^3\right|$
< 10^{-6}

since $|-\cos(c)| \leq 1$.

Remark: It can be shown that

 $\sin(x) \le x$

for all $x \ge 0$.

We can use Taylor's Theorem to show this for all $x \in [0, \frac{\pi}{2}]$.

The statement is clearly true for x = 0. Let $x \in (0, \frac{\pi}{2}]$. Then by Taylor's Theorem there is a $c \in (0, x)$ with

$$\sin(x) - x = R_{1,0}(x) = \frac{-\sin(c)}{2}x^2 < 0$$

since $\sin(c) > 0$ for any $c \in (0, \frac{\pi}{2})$.