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Taylor’s Remainder

Definition: [Taylor Remainder]

Assume that f(x) is n times differentiable at = a. Let
Rp.o(®) = f(2) — Tna().

R,, o(x) is called the n-th degree Taylor remainder function centered at
r = Q.

Note: The error in using the Taylor polynomial to approximate f(x) is
given by
Error =| Ry, o () | .



Taylor’s Remainder

Central Problem: Given a function f(x) and a point x = a, how do we
estimate the size of R,, o (x)?

Theorem: [Taylor’s Theorem]

Assume that f(x) is n + 1-times differentiable on an interval T
containing * = a. Let x € I. Then there exists a point ¢ between x and
a such that

f(n+1) (c)

f(@) — Tha(z) = Rpo(x) = (n+1)!

(x —a)™tt.



Examples

sin(x) — «
2 '
Solution: This is an indeterminate limit of the type g.

We know that if f(x) = sin(x), then
T170(:D) = T270(:E) = x.

Example 1: Find lim
x—0

Taylor’'s Theorem shows that for any @ € [—1, 1], there exists a ¢ between 0
and x such that

— cos(c) 2
3!
since | — cos(c) | < 1 regardless where c is located. So

<Iizp
- 6

| sin(x) —x | =

—claf<sin@) —2 < et (o)

and thenif x € [—1, 1] with @ # O,

KA <sm(m)—a:< |ac|
6 — x? - 6
Hence, by the Squeeze Theorem,
lim S0@) =2 _

z—0 x2



Taylor’s Approximation Theorem

Important Remark: Suppose that f**1) (x) is a continuous function on
[—1,1]. Then so is the function

(k+1)
o) = | T2
(k+ 1)!
By Extreme Value Theorem there is an M > 0 such that
f(k-i-l)(m)
s <a
forallx € [—1,1]. By Taylor's Theorem there is a ¢ between @ and 0 such that
f(k+1) c
Therefore,
| f(@) — Two(z) | = | Rio(z) |
_ V() ki
o (B4

< M|z|t

forallz € [—1, 1] since cis also in [—1, 1].
It follows that

—M |z "< f(2) = Teo(z) < M |z [T



Taylor’s Approximation Theorem

Theorem: [Taylor’s Approximation Theorem]

Assume that f*+1)(z) is continuous on [—1, 1]. Then there exists a
constant M > 0 such that

| F(®) = Tho(2) [ < M | 2 |
or equivalently that
—M |z "t < f(@) — Thol(x) < M |z [*F!
foreach x € [—1, 1].
Remark: This theorem tells us that if £(*+1)(z) is continuous on

[—1, 1], then the error in using Ty, (x) to approximate f(x) is of the
same order of magnitude as |z|*+1.
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cos(x)

h(x) =
—0.4 () x2

Example: Calculate
cos(xz) — 1

z—0 x2



Examples

Example (continued): Calculate

. cos(zx)—1

lim ———
x—0 x2

We know that for f(z) = cos(z) we have

$2

T z)=1— —.
2,0(2) >

Moreover, all of the derivatives of cos(x) are continuous so the Taylor
Approximation Theorem tells us that there is a constant M such that

2
xr
—M|91/‘|3SCOS(90)—(1—?)SMlﬂb‘l3

forallxz € [—1,1].
Dividing by =2 with = # 0 we have that

cos(x) — (1 — ‘”—;)

~M |z |< =

<M ||

forallx € [—1,1] with z # 0.



Examples

Example (continued):

Simplifying produces

cos(r) —1 1
—M |z |< <Mz
x 2
forallxz € [—1,1], z # 0.
The Squeeze Theorem gives us
cos(x) — 1 1
cos(e) =1 1 _
z—0 x2 2
which is equivalent to
cos(z) -1 1
x—0 ;1;2 B 5 ’



Examples
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Example: Find
4
. e7 — cos(z?)
lim .
z—0 s



Examples

Example (continued): Find

=4

5 2
lim €2 c4os(a: )
xz—0 €T
Solution: If g(u) = e*, then Th,0(u) = Lo(u) = 1 4 u so Taylor's
Approximation Theorem says that there exits My > 0 with

—Mu? < e* — (1+u) < Myu® (%)
forallu € [—1,1].

lfx € [—1,1],s0is u = Z . Thenletu = % to get

4 24 4 4
—My(5)? < e — (14 5) < Mi(5)?

or
M ot 4 M
—fat<eT 1+ ) < Tt (+w)

foreveryxz € [—1,1].



Examples

Example (continued): Find

ﬁ 2
. ez —cos(xz”)
lim ——~,
z—0 x4

Solution (continued): We also can show that there exists a constant M2 such
that for any v € [—1, 1]

2
—Mov* < cos(v) — (1 — %) < Mov*

. 02 . .
since 1 — %- is the third degree Taylor Polynomial for cos(v).

If z € [—1,1], then sois . If we let v = =, then we have
m4
—Msa® < cos(z®) — (1 — 7) < Myax®.
Multiplying by —1 gives

4
—Mox® < (1 — %) — cos(x?) < Maa®. (%% %)



Examples

Example (continued): Find

s

lim ez — c4os(ac2).
z—0 €T

Solution (continued): We have

z? 4
et et a4 2y < Mt (o)
and

—Mox® < (1 — %4) — cos(x?) < Maa®. (%)
Adding the two inequalities together gives
~ g Mm)et < ¥ - (4 D)+ (- 5 —eos(a?) < (P4 pa
or

~(M 4 My)a® < [e% — cos(@?)] — 2* < (P + My)a®



Examples

Example (continued): Find
4
— 2
lim &> c4os(a: )
xz—0 €T

Solution (continued): Let M = 201 + M, and divide by =* to get

4

z _ 2
_Mm4§e2—<;°5(w)_1§Mm4
€T
forallz € [—1,1] with = # 0.
Since R
4 _ €72 —cos(xz?) 4
—Max™ < — -1 < M=z
< p <
the Squeeze Theorem shows that
m4
. ez —cos(x?) _
e 1=
and hence that R
z= 2
lim €2 —cos(@?) _

x—0 :)34



Examples

Question: Is there an easier way to get this limit?
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