Taylor's Approximation Theorem

Created by

Barbara Forrest and Brian Forrest

Taylor's Remainder

Definition: [Taylor Remainder]

Assume that $f(x)$ is n times differentiable at $x=a$. Let

$$
R_{n, a}(x)=f(x)-T_{n, a}(x)
$$

$\boldsymbol{R}_{n, a}(x)$ is called the n-th degree Taylor remainder function centered at $x=a$.

Note: The error in using the Taylor polynomial to approximate $f(x)$ is given by

$$
\text { Error }=\left|R_{n, a}(x)\right|
$$

Taylor's Remainder

Central Problem: Given a function $f(x)$ and a point $x=a$, how do we estimate the size of $R_{n, a}(x)$?

Theorem: [Taylor's Theorem]

Assume that $f(x)$ is $n+1$-times differentiable on an interval I containing $x=a$. Let $x \in I$. Then there exists a point c between x and a such that

$$
f(x)-T_{n, a}(x)=R_{n, a}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
$$

Examples

Example 1: Find $\lim _{x \rightarrow 0} \frac{\sin (x)-x}{x^{2}}$.
Solution: This is an indeterminate limit of the type $\frac{0}{0}$.
We know that if $f(x)=\sin (x)$, then

$$
T_{1,0}(x)=T_{2,0}(x)=x
$$

Taylor's Theorem shows that for any $x \in[-1,1]$, there exists a c between 0 and x such that

$$
\begin{equation*}
|\sin (x)-x|=\left|\frac{-\cos (c)}{3!} x^{3}\right| \leq \frac{1}{6}|x|^{3} \tag{*}
\end{equation*}
$$

since $|-\cos (c)| \leq 1$ regardless where c is located. So

$$
-\frac{1}{6}|x|^{3} \leq \sin (x)-x \leq \frac{1}{6}|x|^{3} \quad(* *)
$$

and then if $x \in[-1,1]$ with $x \neq 0$,

$$
-\frac{|x|}{6} \leq \frac{\sin (x)-x}{x^{2}} \leq \frac{|x|}{6}
$$

Hence, by the Squeeze Theorem,

$$
\lim _{x \rightarrow 0} \frac{\sin (x)-x}{x^{2}}=0
$$

Taylor's Approximation Theorem

Important Remark: Suppose that $f^{(k+1)}(x)$ is a continuous function on $[-1,1]$. Then so is the function

$$
g(x)=\left|\frac{f^{(k+1)}(x)}{(k+1)!}\right|
$$

By Extreme Value Theorem there is an $M \geq 0$ such that

$$
\begin{equation*}
\left|\frac{f^{(k+1)}(x)}{(k+1)!}\right| \leq M \tag{*}
\end{equation*}
$$

for all $\boldsymbol{x} \in[-1,1]$. By Taylor's Theorem there is a \boldsymbol{c} between \boldsymbol{x} and $\mathbf{0}$ such that

$$
\left|R_{k, 0}(x)\right|=\left|\frac{f^{(k+1)}(c)}{(k+1)!} x^{k+1}\right| . \quad(* *)
$$

Therefore,

$$
\begin{aligned}
\left|f(x)-T_{k, 0}(x)\right| & =\left|R_{k, 0}(x)\right| \\
& =\left|\frac{f^{(k+1)}(c)}{(k+1)!} x^{k+1}\right| \\
& \leq M|x|^{k+1}
\end{aligned}
$$

for all $x \in[-1,1]$ since c is also in $[-1,1]$.
It follows that

$$
-M|x|^{k+1} \leq f(x)-T_{k, 0}(x) \leq M|x|^{k+1}
$$

Taylor's Approximation Theorem

Theorem: [Taylor's Approximation Theorem]

Assume that $f^{(k+1)}(x)$ is continuous on $[-1,1]$. Then there exists a constant $M \geq 0$ such that

$$
\left|f(x)-T_{k, 0}(x)\right| \leq M|x|^{k+1}
$$

or equivalently that

$$
-M|x|^{k+1} \leq f(x)-T_{k, 0}(x) \leq M|x|^{k+1}
$$

for each $x \in[-1,1]$.

Remark: This theorem tells us that if $f^{(k+1)}(x)$ is continuous on [$-1,1$], then the error in using $T_{k, 0}(x)$ to approximate $f(x)$ is of the same order of magnitude as $|x|^{k+1}$.

Examples

Example: Calculate

$$
\lim _{x \rightarrow 0} \frac{\cos (x)-1}{x^{2}}
$$

Examples

Example (continued): Calculate

$$
\lim _{x \rightarrow 0} \frac{\cos (x)-1}{x^{2}}
$$

We know that for $f(x)=\cos (x)$ we have

$$
T_{2,0}(x)=1-\frac{x^{2}}{2}
$$

Moreover, all of the derivatives of $\cos (x)$ are continuous so the Taylor Approximation Theorem tells us that there is a constant M such that

$$
-M|x|^{3} \leq \cos (x)-\left(1-\frac{x^{2}}{2}\right) \leq M|x|^{3}
$$

for all $x \in[-1,1]$.
Dividing by x^{2} with $x \neq 0$ we have that

$$
-M|x| \leq \frac{\cos (x)-\left(1-\frac{x^{2}}{2}\right)}{x^{2}} \leq M|x|
$$

for all $x \in[-1,1]$ with $x \neq 0$.

Examples

Example (continued):

Simplifying produces

$$
-M|x| \leq \frac{\cos (x)-1}{x^{2}}+\frac{1}{2} \leq M|x|
$$

for all $x \in[-1,1], x \neq 0$.

The Squeeze Theorem gives us

$$
\lim _{x \rightarrow 0} \frac{\cos (x)-1}{x^{2}}+\frac{1}{2}=0
$$

which is equivalent to

$$
\lim _{x \rightarrow 0} \frac{\cos (x)-1}{x^{2}}=-\frac{1}{2} .
$$

Examples

Example: Find

$$
\lim _{x \rightarrow 0} \frac{e^{\frac{x^{4}}{2}}-\cos \left(x^{2}\right)}{x^{4}}
$$

Examples

Example (continued): Find

$$
\lim _{x \rightarrow 0} \frac{e^{\frac{x^{4}}{2}}-\cos \left(x^{2}\right)}{x^{4}}
$$

Solution: If $g(u)=e^{u}$, then $T_{1,0}(u)=L_{0}(u)=1+u$ so Taylor's Approximation Theorem says that there exits $M_{1}>\mathbf{0}$ with

$$
\begin{equation*}
-M_{1} u^{2} \leq e^{u}-(1+u) \leq M_{1} u^{2} \tag{*}
\end{equation*}
$$

for all $u \in[-1,1]$.
If $x \in[-1,1]$, so is $u=\frac{x^{4}}{2}$. Then let $u=\frac{x^{4}}{2}$ to get

$$
-M_{1}\left(\frac{x^{4}}{2}\right)^{2} \leq e^{\frac{x^{4}}{2}}-\left(1+\frac{x^{4}}{2}\right) \leq M_{1}\left(\frac{x^{4}}{2}\right)^{2}
$$

or

$$
-\frac{M_{1}}{4} x^{8} \leq e^{\frac{x^{4}}{2}}-\left(1+\frac{x^{4}}{2}\right) \leq \frac{M_{1}}{4} x^{8} \quad(* *)
$$

for every $x \in[-1,1]$.

Examples

Example (continued): Find

$$
\lim _{x \rightarrow 0} \frac{e^{\frac{x^{4}}{2}}-\cos \left(x^{2}\right)}{x^{4}}
$$

Solution (continued): We also can show that there exists a constant \boldsymbol{M}_{2} such that for any $v \in[-1,1]$

$$
-M_{2} v^{4} \leq \cos (v)-\left(1-\frac{v^{2}}{2}\right) \leq M_{2} v^{4}
$$

since $1-\frac{v^{2}}{2}$ is the third degree Taylor Polynomial for $\cos (v)$.
If $x \in[-1,1]$, then so is x^{2}. If we let $v=x^{2}$, then we have

$$
-M_{2} x^{8} \leq \cos \left(x^{2}\right)-\left(1-\frac{x^{4}}{2}\right) \leq M_{2} x^{8}
$$

Multiplying by $\mathbf{- 1}$ gives

$$
-M_{2} x^{8} \leq\left(1-\frac{x^{4}}{2}\right)-\cos \left(x^{2}\right) \leq M_{2} x^{8} . \quad(* * *)
$$

Examples

Example (continued): Find

$$
\lim _{x \rightarrow 0} \frac{e^{\frac{x^{4}}{2}}-\cos \left(x^{2}\right)}{x^{4}}
$$

Solution (continued): We have

$$
-\frac{M_{1}}{4} x^{8} \leq e^{\frac{x^{4}}{2}}-\left(1+\frac{x^{4}}{2}\right) \leq \frac{M_{1}}{4} x^{8} \quad(* *)
$$

and

$$
-M_{2} x^{8} \leq\left(1-\frac{x^{4}}{2}\right)-\cos \left(x^{2}\right) \leq M_{2} x^{8} . \quad(* * *)
$$

Adding the two inequalities together gives
$-\left(\frac{M_{1}}{4}+M_{2}\right) x^{8} \leq e^{\frac{x^{4}}{2}}-\left(\not 11+\frac{x^{4}}{2}\right)+\left(\not 1-\frac{x^{4}}{2}\right)-\cos \left(x^{2}\right) \leq\left(\frac{M_{1}}{4}+M_{2}\right) x^{8}$
or

$$
-\left(\frac{M_{1}}{4}+M_{2}\right) x^{8} \leq\left[e^{\frac{x^{4}}{2}}-\cos \left(x^{2}\right)\right]-x^{4} \leq\left(\frac{M_{1}}{4}+M_{2}\right) x^{8}
$$

Examples

Example (continued): Find

$$
\lim _{x \rightarrow 0} \frac{e^{\frac{x^{4}}{2}}-\cos \left(x^{2}\right)}{x^{4}}
$$

Solution (continued): Let $M=\frac{M_{1}}{4}+M_{2}$ and divide by x^{4} to get

$$
-M x^{4} \leq \frac{e^{\frac{x^{4}}{2}}-\cos \left(x^{2}\right)}{x^{4}}-1 \leq M x^{4}
$$

for all $x \in[-1,1]$ with $x \neq 0$.
Since

$$
-M x^{4} \leq \frac{e^{\frac{x^{4}}{2}}-\cos \left(x^{2}\right)}{x^{4}}-1 \leq M x^{4}
$$

the Squeeze Theorem shows that

$$
\lim _{x \rightarrow 0} \frac{e^{\frac{x^{4}}{2}}-\cos \left(x^{2}\right)}{x^{4}}-1=0
$$

and hence that

$$
\lim _{x \rightarrow 0} \frac{e^{\frac{x^{4}}{2}}-\cos \left(x^{2}\right)}{x^{4}}=1
$$

Examples

Question: Is there an easier way to get this limit?

