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Taylor’s Remainder

Definition: [Taylor Remainder]

Assume that f(x) is n times differentiable at x = a. Let

Rn,a(x) = f(x)− Tn,a(x).

Rn,a(x) is called the n-th degree Taylor remainder function centered at
x = a.

Note: The error in using the Taylor polynomial to approximate f(x) is
given by

Error =| Rn,a(x) | .
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Taylor’s Remainder

Central Problem: Given a function f(x) and a point x = a, how do we
estimate the size of Rn,a(x)?

Theorem: [Taylor’s Theorem]

Assume that f(x) is n + 1-times differentiable on an interval I
containing x = a. Let x ∈ I. Then there exists a point c between x and
a such that

f(x)− Tn,a(x) = Rn,a(x) =
f (n+1)(c)

(n + 1)!
(x− a)n+1.
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Examples

Example 1: Find lim
x→0

sin(x)− x

x2
.

Solution: This is an indeterminate limit of the type 0
0

.

We know that if f(x) = sin(x), then

T1,0(x) = T2,0(x) = x.

Taylor’s Theorem shows that for any x ∈ [−1, 1], there exists a c between 0
and x such that

| sin(x)− x |=
∣∣∣∣− cos(c)

3!
x3

∣∣∣∣ ≤ 1

6
| x |3 (∗)

since | − cos(c) | ≤ 1 regardless where c is located. So

−1

6
| x |3≤ sin(x)− x ≤ 1

6
| x |3 (∗∗)

and then if x ∈ [−1, 1] with x 6= 0,

−| x |
6
≤ sin(x)− x

x2
≤ | x |

6
.

Hence, by the Squeeze Theorem,

lim
x→0

sin(x)− x

x2
= 0.COPYRIG
HTED



Taylor’s Approximation Theorem
Important Remark: Suppose that f (k+1)(x) is a continuous function on
[−1, 1]. Then so is the function

g(x) =

∣∣∣∣f (k+1)(x)

(k + 1)!

∣∣∣∣ .

By Extreme Value Theorem there is an M ≥ 0 such that∣∣∣∣f (k+1)(x)

(k + 1)!

∣∣∣∣ ≤M (∗)

for all x ∈ [−1, 1]. By Taylor’s Theorem there is a c between x and 0 such that

| Rk,0(x) |=
∣∣∣∣f (k+1)(c)

(k + 1)!
xk+1

∣∣∣∣ . (∗∗)

Therefore,
| f(x)− Tk,0(x) | = | Rk,0(x) |

=

∣∣∣∣f (k+1)(c)

(k + 1)!
xk+1

∣∣∣∣
≤ M | x |k+1

for all x ∈ [−1, 1] since c is also in [−1, 1].
It follows that

−M | x |k+1≤ f(x)− Tk,0(x) ≤M | x |k+1 .COPYRIG
HTED



Taylor’s Approximation Theorem

Theorem: [Taylor’s Approximation Theorem]

Assume that f (k+1)(x) is continuous on [−1, 1]. Then there exists a
constant M ≥ 0 such that

| f(x)− Tk,0(x) | ≤M | x |k+1

or equivalently that

−M | x |k+1≤ f(x)− Tk,0(x) ≤M | x |k+1

for each x ∈ [−1, 1].

Remark: This theorem tells us that if f (k+1)(x) is continuous on
[−1, 1], then the error in using Tk,0(x) to approximate f(x) is of the
same order of magnitude as |x|k+1.COPYRIG

HTED



Examples

h(x) =
cos(x)− 1

x2
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Example: Calculate

lim
x→0

cos(x)− 1

x2
.COPYRIG
HTED



Examples
Example (continued): Calculate

lim
x→0

cos(x)− 1

x2
.

We know that for f(x) = cos(x) we have

T2,0(x) = 1−
x2

2
.

Moreover, all of the derivatives of cos(x) are continuous so the Taylor
Approximation Theorem tells us that there is a constant M such that

−M | x |3≤ cos(x)− (1−
x2

2
) ≤M | x |3

for all x ∈ [−1, 1].

Dividing by x2 with x 6= 0 we have that

−M | x | ≤
cos(x)− (1− x2

2
)

x2
≤M | x |

for all x ∈ [−1, 1] with x 6= 0.COPYRIG
HTED



Examples

Example (continued):

Simplifying produces

−M | x | ≤
cos(x)− 1

x2
+

1

2
≤M | x |

for all x ∈ [−1, 1], x 6= 0.

The Squeeze Theorem gives us

lim
x→0

cos(x)− 1

x2
+

1

2
= 0

which is equivalent to

lim
x→0

cos(x)− 1

x2
= −

1

2
.COPYRIG
HTED



Examples

h(x) =
e

x4

2 − cos(x2)

x4
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Example: Find

lim
x→0

e
x4

2 − cos(x2)

x4
.COPYRIG
HTED



Examples

Example (continued): Find

lim
x→0

e
x4

2 − cos(x2)

x4
.

Solution: If g(u) = eu, then T1,0(u) = L0(u) = 1 + u so Taylor’s
Approximation Theorem says that there exits M1 > 0 with

−M1u
2 ≤ eu − (1 + u) ≤M1u

2 (∗)

for all u ∈ [−1, 1].

If x ∈ [−1, 1], so is u = x4

2
. Then let u = x4

2
to get

−M1(
x4

2
)2 ≤ e

x4

2 − (1 +
x4

2
) ≤M1(

x4

2
)2

or

−M1

4
x8 ≤ e

x4

2 − (1 +
x4

2
) ≤ M1

4
x8 (∗∗)

for every x ∈ [−1, 1].COPYRIG
HTED



Examples
Example (continued): Find

lim
x→0

e
x4

2 − cos(x2)

x4
.

Solution (continued): We also can show that there exists a constant M2 such
that for any v ∈ [−1, 1]

−M2v
4 ≤ cos(v)− (1− v2

2
) ≤M2v

4

since 1− v2

2
is the third degree Taylor Polynomial for cos(v).

If x ∈ [−1, 1], then so is x2. If we let v = x2, then we have

−M2x
8 ≤ cos(x2)− (1− x4

2
) ≤M2x

8 .

Multiplying by−1 gives

−M2x
8 ≤ (1− x4

2
)− cos(x2) ≤M2x

8. (∗ ∗ ∗)COPYRIG
HTED



Examples

Example (continued): Find

lim
x→0

e
x4

2 − cos(x2)

x4
.

Solution (continued): We have

−M1

4
x8 ≤ e

x4

2 − (1 +
x4

2
) ≤ M1

4
x8 (∗∗)

and

−M2x
8 ≤ (1− x4

2
)− cos(x2) ≤M2x

8. (∗ ∗ ∗)

Adding the two inequalities together gives

−(M1

4
+M2)x

8 ≤ e
x4

2 −(�1+
x4

2
)+(�1−

x4

2
)−cos(x2) ≤ (

M1

4
+M2)x

8

or

−(M1

4
+ M2)x

8 ≤ [e
x4

2 − cos(x2)]− x4 ≤ (
M1

4
+ M2)x

8COPYRIG
HTED



Examples
Example (continued): Find

lim
x→0

e
x4

2 − cos(x2)

x4
.

Solution (continued): Let M = M1
4

+ M2 and divide by x4 to get

−Mx4 ≤ e
x4

2 − cos(x2)

x4
− 1 ≤Mx4

for all x ∈ [−1, 1] with x 6= 0.

Since

−Mx4 ≤ e
x4

2 − cos(x2)

x4
− 1 ≤Mx4

the Squeeze Theorem shows that

lim
x→0

e
x4

2 − cos(x2)

x4
− 1 = 0

and hence that

lim
x→0

e
x4

2 − cos(x2)

x4
= 1.COPYRIG
HTED



Examples

Question: Is there an easier way to get this limit?
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