Taylor Polynomials

Created by

Barbara Forrest and Brian Forrest

Linear Approximation

Recall:

Definition: [Linear Approximation]

If $f(x)$ is differentiable at $x=a$, then

$$
L_{a}^{f}(x)=f(a)+f^{\prime}(a)(x-a)
$$

is called the linear approximation to $f(x)$ centered at $x=a$.
Key Properties:

1. $L_{a}^{f}(a)=f(a)$.
2. $\left(L_{a}^{f}\right)^{\prime}(a)=f^{\prime}(a)$.
3. $L_{a}^{f}(x)$ is the unique function of the form $y=c_{o}+c_{1}(x-a)$ satisfying (1) and (2).
4. If $x \cong a$, then $L_{a}^{f}(x) \cong f(x)$.

Note: The graph of $L_{a}^{f}(x)$ is the tangent line to the graph of $f(x)$ through $(a, f(a))$.

Error in Approximating Functions

Observation : The error in linear approximation

$$
\left|f(x)-L_{a}^{f}(x)\right|
$$

depends on two factors:

1) The distance from x to $a \Rightarrow|x-a|$.
2) The curvature of the graph of $f(x)$ near $x=a \Rightarrow\left|f^{\prime \prime}(x)\right|$ near $x=a$.

Question 1: Can we approximate $f(x)$ better by using a second degree polynomial that also encodes $f^{\prime \prime}(a)$?

Taylor Polynomials

Question 2: Can we find a polynomial

$$
p(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}
$$

such that

$$
\begin{aligned}
p(a) & =f(a) \\
p^{\prime}(a) & =f^{\prime}(a) \\
p^{\prime \prime}(a) & =f^{\prime \prime}(a) ?
\end{aligned}
$$

Solution:
i) $f(a)=p(a)=c_{0}+c_{1}(a-a)+c_{2}(a-a)^{2}=c_{0} \Rightarrow c_{0}=f(a)$.
ii) $p^{\prime}(x)=c_{1}+2 \cdot c_{2}(x-a) \Rightarrow f^{\prime}(a)=p^{\prime}(a)=$ $c_{1}+2 \cdot c_{2}(a-a)=c_{1} \Rightarrow c_{1}=f^{\prime}(a)$
iii) $p^{\prime \prime}(x)=2 \cdot c_{2} \Rightarrow f^{\prime \prime}(a)=p^{\prime \prime}(a)=2 \cdot c_{2} \Rightarrow c_{2}=\frac{f^{\prime \prime}(a)}{2}$

Note: This polynomial, denoted by

$$
T_{2, a}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}=L_{a}^{f}(x)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}
$$

is called the second degree Taylor polynomial of $f(x)$ centered at $x=a$.

Taylor Polynomials

Example:

$$
\text { Let } f(x)=\cos (x)
$$

Then,

$$
\begin{aligned}
f(0) & =\cos (0)=1 \\
f^{\prime}(0) & =-\sin (0)=0 \\
f^{\prime \prime}(0) & =-\cos (0)=-1
\end{aligned}
$$

So

$$
L_{0}(x)=f(0)+f^{\prime}(0)(x-0)=1+0(x-0)=1
$$

for all \boldsymbol{x} while

$$
\begin{aligned}
T_{2,0}(x) & =f(0)+f^{\prime}(0)(x-0)+\frac{f^{\prime \prime}(0)}{2}(x-0)^{2} \\
& =1+0(x-0)+\frac{-1}{2}(x-0)^{2} \\
& =1-\frac{x^{2}}{2} .
\end{aligned}
$$

Taylor Polynomials

Question 3: Can we encode more derivatives?
Answer: If
$p(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}$,
then

1. $p(a)=f(a)$,
2. $p^{\prime}(a)=f^{\prime}(a)$,
3. $p^{\prime \prime}(a)=f^{\prime \prime}(a)$, and
4. $p^{\prime \prime \prime}(a)=f^{\prime \prime \prime}(a)$.

Notation: In this case, we call $p(x)$ the third degree Taylor polynomial centered at $x=a$ and denote it by $T_{3, a}(x)$.

Taylor Polynomials

Definition: [Taylor Polynomials]

Assume that $f(x)$ is n-times differentiable at $\boldsymbol{x}=\boldsymbol{a}$. The \boldsymbol{n}-th degree Taylor polynomial for $f(x)$ centered at $x=a$ is the polynomial

$$
\begin{aligned}
T_{n, a}(x)= & \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k} \\
= & f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+ \\
& \cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
\end{aligned}
$$

Observation: Using the convention where $0!=1!=1$ and $(x-a)^{0}=1$, we have the following:

$$
\begin{aligned}
& T_{0, a}(x)=\frac{f(a)}{0!}(x-a)^{0}=f(a) \\
& T_{1, a}(x)=\frac{f(a)}{0!}(x-a)^{0}+\frac{f^{\prime}(a)}{1!}(x-a)^{1}=L_{a}^{f}(x) \\
& T_{2, a}(x)=\frac{f(a)}{0!}(x-a)^{0}+\frac{f^{\prime}(a)}{1!}(x-a)^{1}+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}
\end{aligned}
$$

Taylor Polynomials

Key Observation: A remarkable property about $T_{n, a}(x)$ is that for any \boldsymbol{k} between $\mathbf{0}$ and \boldsymbol{n},

$$
T_{n, a}^{(k)}(a)=f^{(k)}(a)
$$

That is, $\boldsymbol{T}_{n, a}(x)$ encodes not only the value of $f(x)$ at $x=a$ but all of its first n derivatives as well. Moreover, this is the only polynomial of degree \boldsymbol{n} or less that does so.

