Taylor Polynomials: Examples: Part 2

Created by

Barbara Forrest and Brian Forrest

Taylor Polynomials

Definition: [Taylor Polynomials]

Assume that f(x) is n-times differentiable at x=a. The n-th degree Taylor polynomial for f(x) centered at x=a is the polynomial

$$T_{n,a}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k}$$

$$= f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^{2} + \cdots + \frac{f^{(n)}(a)}{n!} (x-a)^{n}$$

Taylor Polynomials for $\sin(x)$

Example 2: Find all of the Taylor polynomials up to degree 5 for the function $f(x) = \sin(x)$ with center x = 0.

Solution: We can see that

$$f(0) = \sin(0) = 0,$$

 $f'(0) = \cos(0) = 1,$
 $f''(0) = -\sin(0) = 0,$
 $f'''(0) = -\cos(0) = -1,$
 $f^{(4)}(0) = \sin(0) = 0,$ and
 $f^{(5)}(0) = \cos(0) = 1.$

Therefore

$$T_{0,0}(x) = 0,$$

 $T_{1,0}(x) = L_0(x) = 0 + 1(x - 0) = x$

and

$$T_{2,0}(x) = 0 + 1(x - 0) + \frac{0}{2!}(x - 0)^2$$

= x
= $T_{1,0}(x)$.

Taylor Polynomials for $\sin(x)$

Example 2 (continued): Find all of the Taylor polynomials up to degree 5 for the function $f(x) = \sin(x)$ with center x = 0.

Solution (continued): Recall that
$$f(0) = \sin(0) = 0$$
, $f'(0) = \cos(0) = 1$, $f''(0) = -\sin(0) = 0$, $f'''(0) = -\cos(0) = -1$, $f^{(4)}(0) = \sin(0) = 0$, and $f^{(5)}(0) = \cos(0) = 1$.

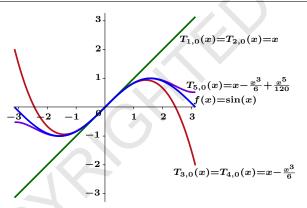
Next we have

$$T_{3,0}(x) = 0 + 1(x - 0) + \frac{0}{2!}(x - 0)^2 + \frac{-1}{3!}(x - 0)^3$$
$$= x - \frac{x^3}{6}$$
$$= T_{4,0}(x)$$

Finally,

$$T_{5,0}(x) = T_{4,0}(x) + \frac{x^5}{5!} = x - \frac{x^3}{6} + \frac{x^5}{120}$$

Taylor Polynomials for $\sin(x)$



Note: The diagram displays the graph of $\sin(x)$ with its Taylor Polynomials up to degree 5 (excluding $T_{0,0}(x)$ since its graph is the x-axis).

For
$$k \geq 0$$

$$T_{2k+1,0}(x) = T_{2k+2,0}(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

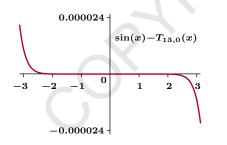
Taylor Polynomials for sin(x)

Question: How accurate is the approximation

$$\sin(x) \cong T_{13,0}(x)$$

where

$$T_{13,0}(x) = x - \frac{1}{6}x^3 + \frac{1}{120}x^5 - \frac{1}{5040}x^7 + \frac{1}{362880}x^9 - \frac{1}{39916800}x^{11} + \frac{1}{6227020800}x^{13}?$$



Note: If $x \in [-1,1]$, then $|\sin(x) - T_{13,0}(x)| < 10^{-12}$ while for $x \in [-0.01,0.01]$, $|\sin(x) - T_{13,0}(x)| < 10^{-42}$.

Taylor Polynomials for e^x

Example: Let $f(x) = e^x$. Then $f^{(k)}(x) = e^x \Rightarrow f^{(k)}(0) = e^0 = 1$

for any k. Therefore

$$T_{n,0}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} (x-0)^{k}$$
$$= \sum_{k=0}^{n} \frac{e^{0}}{k!} x^{k}$$

In particular,

$$T_{0,0}(x) = 1,$$

 $T_{1,0}(x) = 1 + x,$

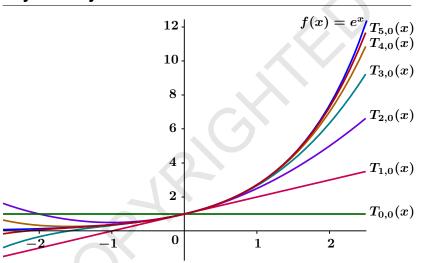
$$T_{1,0}(x) = 1 + x,$$

 $T_{2,0}(x) = 1 + x + \frac{x^2}{2},$

$$T_{3,0}(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$$

$$T_{4,0}(x) = 1 + x + rac{x^2}{2} + rac{x^3}{6} + rac{x^4}{24}, \ T_{5,0}(x) = 1 + x + rac{x^2}{2} + rac{x^3}{6} + rac{x^4}{24} + rac{x^5}{120}.$$

Taylor Polynomials for e^x



$$T_{n,0}(x) = \sum_{k=0}^{n} \frac{x^{(k)}}{k!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots + \frac{x^n}{n!}$$