Taylor Polynomials: Examples

Created by

Barbara Forrest and Brian Forrest

Taylor Polynomials

Recall:

Definition: [Taylor Polynomials]

Assume that f(x) is *n*-times differentiable at x = a. The *n*-th degree Taylor polynomial for f(x) centered at x = a is the polynomial

$$T_{n,a}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k}$$

= $f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^{2} + \cdots + \frac{f^{(n)}(a)}{n!} (x-a)^{n}$

Observation: Using the convention where 0! = 1! = 1 and $(x - a)^0 = 1$, we have the following:

$$T_{0,a}(x) = \frac{f(a)}{0!}(x-a)^0 = f(a)$$

$$T_{1,a}(x) = \frac{f(a)}{0!}(x-a)^0 + \frac{f'(a)}{1!}(x-a)^1 = f(a) + f'(a)(x-a)$$

$$= L_a^f(x).$$

Taylor Polynomials for $\cos(x)$

Example 1: Find all of the Taylor polynomials up to degree 5 for the function f(x) = cos(x) with center x = 0.

Solution: We know that

$$f(0) = \cos(0) = 1,$$

$$f'(0) = -\sin(0) = 0, \text{ and}$$

$$f''(0) = -\cos(0) = -1.$$

It follows that

$$\begin{array}{rcl} T_{0,0}(x) &=& 1, \\ T_{1,0}(x) &=& L_0(x) = 1 + 0(x-0) = 1, \text{ and} \\ T_{2,0}(x) &=& 1 + 0(x-0) + \frac{-1}{2!}(x-0)^2 = 1 - \frac{x^2}{2} \end{array}$$

for all x.

Note:

$$T_{0,0}(x) = 1 = T_{1,0}(x)$$

Taylor Polynomials for $\cos(x)$

Example 1 (continued): Find all of the Taylor polynomials up to degree 5 for the function f(x) = cos(x) with center x = 0.

Solution (continued): Recall $f'''(x) = \sin(x)$, $f^{(4)}(x) = \cos(x)$, and $f^{(5)}(x) = -\sin(x)$, we get $f'''(0) = \sin(0) = 0$, $f^{(4)}(0) = \cos(0) = 1$ and $f^{(5)}(0) = -\sin(0) = 0$. Hence,

$$T_{3,0}(x) = 1 + 0(x - 0) + \frac{-1}{2!}(x - 0)^2 + \frac{0}{3!}(x - 0)^3$$

= $1 - \frac{x^2}{2}$
= $T_{2,0}(x)$

We also have that

$$T_{4,0}(x) = 1 + 0(x-0) + \frac{-1}{2!}(x-0)^2 + \frac{0}{3!}(x-0)^3 + \frac{1}{4!}(x-0)^4$$

= $1 - \frac{x^2}{2} + \frac{x^4}{24}$
= $T_{5,0}(x)$

Taylor Polynomials for $\cos(x)$

Note: The diagram displays the graph of cos(x) with its Taylor Polynomials up to degree 5.

For $k \ge 0$ $T_{2k+1,0}(x) = T_{2k+1,0}(x) = 1 - \frac{x^2}{x} + \frac{x^4}{x} + \frac{x^4}{x}$

$$T_{2k,0}(x) = T_{2k+1,0}(x) = 1 - \frac{x^2}{2} + \frac{x^4}{4!} + \dots + (-1)^k \frac{x^{2k}}{2k!}$$

24

Taylor Polynomials for $\sin(x)$

Example 2: Find all of the Taylor polynomials up to degree 5 for the function $f(x) = \sin(x)$ with center x = 0.

Solution : We can see that

$$f(0) = \sin(0) = 0,$$

$$f'(0) = \cos(0) = 1,$$

$$f''(0) = -\sin(0) = 0,$$

$$f'''(0) = -\cos(0) = -1,$$

$$f^{(4)}(0) = \sin(0) = 0, \text{ and}$$

$$f^{(5)}(0) = \cos(0) = 1.$$

Therefore

$$egin{array}{rll} T_{0,0}(x)&=&0,\ T_{1,0}(x)&=&L_0(x)=0+1(x-0)=x \end{array}$$

and

$$T_{2,0}(x) = 0 + 1(x - 0) + \frac{0}{2!}(x - 0)^2$$

= x
= T_{1,0}(x).

Taylor Polynomials for $\sin(x)$

Example 2 (continued): Find all of the Taylor polynomials up to degree 5 for the function $f(x) = \sin(x)$ with center x = 0.

Solution (continued): Recall that $f(0) = \sin(0) = 0$, $f'(0) = \cos(0) = 1$, $f''(0) = -\sin(0) = 0$, $f'''(0) = -\cos(0) = -1$, $f^{(4)}(0) = \sin(0) = 0$, and $f^{(5)}(0) = \cos(0) = 1$.

Next we have

$$T_{3,0}(x) = 0 + 1(x-0) + \frac{0}{2!}(x-0)^2 + \frac{-1}{3!}(x-0)^3$$
$$= x - \frac{x^3}{6}$$
$$= T_{4,0}(x)$$

Finally,

$$T_{5,0}(x) = T_{4,0}(x) + rac{x^5}{5!} = x - rac{x^3}{6} + rac{x^5}{120}$$

Taylor Polynomials for sin(x)

Note: The diagram displays the graph of sin(x) with its Taylor Polynomials up to degree 5 (excluding $T_{0,0}(x)$ since its graph is the *x*-axis).

For $k \ge 0$ $T_{2k+1,0}(x) = T_{2k+2,0}(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^{k-1} \frac{x^{2k+1}}{(2k+1)!}$

Taylor Polynomials for $\sin(x)$

Question: How accurate is the approximation

$$\sin(x) \cong T_{13,0}(x)$$

where

$$T_{13,0}(x) = x - \frac{1}{6}x^3 + \frac{1}{120}x^5 - \frac{1}{5040}x^7 + \frac{1}{362880}x^9 - \frac{1}{39916800}x^{11} + \frac{1}{62270\,20800}x^{13}?$$

Note: If $x \in [-1, 1]$, then $|\sin(x) - T_{13,0}(x)| < 10^{-12}$ while for $x \in [-0.01, 0.01]$, $|\sin(x) - T_{13,0}(x)| < 10^{-42}$.

Taylor Polynomials for e^x

Example: Let
$$f(x) = e^x$$
. Then
 $f^{(k)}(x) = e^x \Rightarrow f^{(k)}(0) = e^0 = 1$
for any k. Therefore
 $T_{n,0}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} (x-0)^k$
 $= \sum_{k=0}^{n} \frac{e^0}{k!} x^k$
 $= \sum_{k=0}^{n} \frac{x^k}{k!}$.
In particular,
 $T_{0,0}(x) = 1$,
 $T_{1,0}(x) = 1 + x$,
 $T_{2,0}(x) = 1 + x + \frac{x^2}{2}$,
 $T_{3,0}(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$,
 $T_{4,0}(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}$,
 $T_{5,0}(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120}$.

Taylor Polynomials for e^x

