Taylor Polynomials: Examples

Created by
Barbara Forrest and Brian Forrest

Taylor Polynomials

Recall:

Definition: [Taylor Polynomials]

Assume that $f(x)$ is n-times differentiable at $\boldsymbol{x}=\boldsymbol{a}$. The n-th degree Taylor polynomial for $f(x)$ centered at $x=a$ is the polynomial

$$
\begin{aligned}
T_{n, a}(x)= & \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k} \\
= & f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+ \\
& \cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
\end{aligned}
$$

Observation: Using the convention where $0!=1!=1$ and $(x-a)^{0}=1$, we have the following:

$$
\begin{aligned}
T_{0, a}(x) & =\frac{f(a)}{0!}(x-a)^{0}=f(a) \\
T_{1, a}(x) & =\frac{f(a)}{0!}(x-a)^{0}+\frac{f^{\prime}(a)}{1!}(x-a)^{1}=f(a)+f^{\prime}(a)(x-a) \\
& =L_{a}^{f}(x)
\end{aligned}
$$

Taylor Polynomials for $\cos (x)$

Example 1: Find all of the Taylor polynomials up to degree 5 for the function $f(x)=\cos (x)$ with center $x=0$.

Solution: We know that

$$
\begin{aligned}
f(0) & =\cos (0)=1, \\
f^{\prime}(0) & =-\sin (0)=0, \text { and } \\
f^{\prime \prime}(0) & =-\cos (0)=-1
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& T_{0,0}(x)=1, \\
& T_{1,0}(x)=L_{0}(x)=1+0(x-0)=1, \text { and } \\
& T_{2,0}(x)=1+0(x-0)+\frac{-1}{2!}(x-0)^{2}=1-\frac{x^{2}}{2}
\end{aligned}
$$

for all x.
Note:

$$
T_{0,0}(x)=1=T_{1,0}(x)
$$

Taylor Polynomials for $\cos (x)$

Example 1 (continued): Find all of the Taylor polynomials up to degree 5 for the function $f(x)=\cos (x)$ with center $x=0$.

Solution (continued): Recall $f^{\prime \prime \prime}(x)=\sin (x), f^{(4)}(x)=\cos (x)$, and $f^{(5)}(x)=-\sin (x)$, we get $f^{\prime \prime \prime}(0)=\sin (0)=0$, $f^{(4)}(0)=\cos (0)=1$ and $f^{(5)}(0)=-\sin (0)=0$. Hence,

$$
\begin{aligned}
T_{3,0}(x) & =1+0(x-0)+\frac{-1}{2!}(x-0)^{2}+\frac{0}{3!}(x-0)^{3} \\
& =1-\frac{x^{2}}{2} \\
& =T_{2,0}(x)
\end{aligned}
$$

We also have that

$$
\begin{aligned}
T_{4,0}(x) & =1+0(x-0)+\frac{-1}{2!}(x-0)^{2}+\frac{0}{3!}(x-0)^{3}+\frac{1}{4!}(x-0)^{4} \\
& =1-\frac{x^{2}}{2}+\frac{x^{4}}{24} \\
& =T_{5,0}(x)
\end{aligned}
$$

Taylor Polynomials for $\cos (x)$

Note: The diagram displays the graph of $\cos (x)$ with its Taylor Polynomials up to degree 5 .

For $k \geq 0$

$$
T_{2 k, 0}(x)=T_{2 k+1,0}(x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}+\cdots+(-1)^{k} \frac{x^{2 k}}{2 k!}
$$

Taylor Polynomials for $\sin (x)$

Example 2: Find all of the Taylor polynomials up to degree 5 for the function $f(x)=\sin (x)$ with center $x=0$.

Solution : We can see that

$$
\begin{aligned}
f(0) & =\sin (0)=0, \\
f^{\prime}(0) & =\cos (0)=1, \\
f^{\prime \prime}(0) & =-\sin (0)=0, \\
f^{\prime \prime \prime}(0) & =-\cos (0)=-1, \\
f^{(4)}(0) & =\sin (0)=0, \text { and } \\
f^{(5)}(0) & =\cos (0)=1 .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& T_{0,0}(x)=0 \\
& T_{1,0}(x)=L_{0}(x)=0+1(x-0)=x
\end{aligned}
$$

and

$$
\begin{aligned}
T_{2,0}(x) & =0+1(x-0)+\frac{0}{2!}(x-0)^{2} \\
& =x \\
& =T_{1,0}(x)
\end{aligned}
$$

Taylor Polynomials for $\sin (x)$

Example 2 (continued): Find all of the Taylor polynomials up to degree 5 for the function $f(x)=\sin (x)$ with center $x=0$.

Solution (continued): Recall that $f(0)=\sin (0)=0$, $f^{\prime}(0)=\cos (0)=1, f^{\prime \prime}(0)=-\sin (0)=0$, $f^{\prime \prime \prime}(0)=-\cos (0)=-1, f^{(4)}(0)=\sin (0)=0$, and $f^{(5)}(0)=\cos (0)=1$.

Next we have

$$
\begin{aligned}
T_{3,0}(x) & =0+1(x-0)+\frac{0}{2!}(x-0)^{2}+\frac{-1}{3!}(x-0)^{3} \\
& =x-\frac{x^{3}}{6} \\
& =T_{4,0}(x)
\end{aligned}
$$

Finally,

$$
T_{5,0}(x)=T_{4,0}(x)+\frac{x^{5}}{5!}=x-\frac{x^{3}}{6}+\frac{x^{5}}{120}
$$

Taylor Polynomials for $\sin (x)$

Note: The diagram displays the graph of $\sin (x)$ with its Taylor Polynomials up to degree 5 (excluding $T_{0,0}(x)$ since its graph is the x-axis).

For $k \geq 0$
$T_{2 k+1,0}(x)=T_{2 k+2,0}(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots+(-1)^{k-1} \frac{x^{2 k+1}}{(2 k+1)!}$

Taylor Polynomials for $\sin (x)$

Question: How accurate is the approximation

$$
\sin (x) \cong T_{13,0}(x)
$$

where

$$
\begin{aligned}
T_{13,0}(x)= & x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7} \\
& +\frac{1}{362880} x^{9}-\frac{1}{39916800} x^{11}+\frac{1}{6227020800} x^{13} ?
\end{aligned}
$$

Note: If $x \in[-1,1]$, then

$$
\begin{aligned}
& \left|\sin (x)-T_{13,0}(x)\right|<10^{-12} \\
& \text { while for } x \in[-0.01,0.01] \\
& \left|\sin (x)-T_{13,0}(x)\right|<10^{-42}
\end{aligned}
$$

Taylor Polynomials for e^{x}

Example: Let $f(x)=e^{x}$. Then

$$
f^{(k)}(x)=e^{x} \Rightarrow f^{(k)}(0)=e^{0}=1
$$

for any \boldsymbol{k}. Therefore

In particular,

$$
\begin{aligned}
\boldsymbol{T}_{n, 0}(x) & =\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!}(x-0)^{k} \\
& =\sum_{k=0}^{n} \frac{e^{0}}{k!} x^{k} \\
& =\sum_{k=0}^{n} \frac{x^{k}}{k!}
\end{aligned}
$$

$$
\begin{aligned}
& T_{0,0}(x)=1 \\
& T_{1,0}(x)=1+x, \\
& T_{2,0}(x)=1+x+\frac{x^{2}}{2} \\
& T_{3,0}(x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6} \\
& T_{4,0}(x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24} \\
& T_{5,0}(x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120} .
\end{aligned}
$$

Taylor Polynomials for e^{x}

