Big-O Notation: Calculating Taylor Polynomials

Created by

Barbara Forrest and Brian Forrest

Taylor's Approximation Theorem II

Theorem: [Taylor's Approximation Theorem II]
Let $r>0$. If $f(x)$ is $(n+1)$-times differentiable on $[-r, r]$ and $f^{(n+1)}(x)$ is continuous on $[-r, r]$, then

$$
f(x)=T_{n, 0}(x)+O\left(x^{n+1}\right)
$$

as $\boldsymbol{x} \rightarrow \mathbf{0}$.
Question: We know that

$$
\cos \left(x^{2}\right)-1=T_{7,0}(x)+O\left(x^{8}\right)
$$

We can show that

$$
\cos \left(x^{2}\right)-1=-\frac{x^{4}}{2}+O\left(x^{8}\right)
$$

Does this mean that

$$
T_{7,0}(x)=-\frac{x^{4}}{2} ?
$$

Taylor's Approximation Theorem II

Theorem: [Characterization of Taylor Polynomials]

Assume that $r>0$. Assume also that $f(x)$ is $(n+1)$-times differentiable on $[-r, r]$ and $f^{(n+1)}(x)$ is continuous on $[-r, r]$. If $p(x)$ is a polynomial of degree n or less with

$$
f(x)=p(x)+O\left(x^{n+1}\right)
$$

then $p(x)=T_{n, 0}(x)$.

Example: We have that

$$
\cos \left(x^{2}\right)-1=-\frac{x^{4}}{2}+O\left(x^{8}\right)
$$

so

$$
T_{7,0}(x)=-\frac{x^{4}}{2} .
$$

We also have

$$
T_{3,0}(x)=0 \quad \text { and } \quad T_{4,0}(x)=-\frac{x^{4}}{2}
$$

Taylor's Approximation Theorem II

Example: Let $f(x)=x^{2}\left(e^{x}-1\right) \sin \left(x^{2}\right)$. Find $T_{5,0}(x)$ and in particular, find $f^{(4)}(0)$ and $f^{(5)}(0)$.

Solution: We know that

$$
\sin (u)=u+O\left(u^{3}\right) \Rightarrow \sin \left(x^{2}\right)=x^{2}+O\left(x^{6}\right)
$$

Observe also that

$$
e^{x}=1+x+O\left(x^{2}\right) \Rightarrow e^{x}-1=x+O\left(x^{2}\right)
$$

Then

$$
\begin{aligned}
f(x) & =x^{2}\left(e^{x}-1\right) \sin \left(x^{2}\right)=x^{2}\left(x+O\left(x^{2}\right)\right)\left(x^{2}+O\left(x^{6}\right)\right) \\
& =\left(x^{3}+O\left(x^{4}\right)\right)\left(x^{2}+O\left(x^{6}\right)\right) \\
& =x^{5}+O\left(x^{9}\right)+O\left(x^{6}\right)+O\left(x^{10}\right) \\
& =x^{5}+O\left(x^{6}\right)
\end{aligned}
$$

The Characterization of Taylor Polynomials Theorem tells us that $x^{5}=T_{5,0}(x)$. Since
$T_{5,0}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{f^{(4)}(0)}{4!} x^{4}+\frac{f^{(5)}(0)}{5!} x^{5}$,
by matching coefficients, we get that $0=\frac{f^{(4)}(0)}{4!}$ and $1=\frac{f^{(5)}(0)}{5!}$. It follows that $f^{(4)}(0)=0$ and $f^{(5)}(0)=5!=120$.

Big-O Arithmetic

Example: Find the 8th degree Taylor Polynomial for $f(x)=x^{3} \sin (x)\left(e^{-x^{2}}-1\right)$ centered at $x=0$.
Question: How accurate do our estimates of $\sin (x)$ and $e^{-x^{2}}-1$ have to be?
Solution: Because of the x^{3} term we want the error in the product $\sin (x)\left(e^{-x^{2}}-1\right)$ to be $\boldsymbol{O}\left(x^{6}\right)$ or better since $x^{3} \boldsymbol{O}\left(x^{6}\right)=\boldsymbol{O}\left(x^{9}\right)$ or better. Now

$$
\sin (x)=x-\frac{x^{3}}{6}+\frac{x^{5}}{120}+\cdots+O\left(x^{k}\right)
$$

and

$$
e^{-x^{2}}-1=-x^{2}+\frac{x^{4}}{2}-\frac{x^{6}}{6}+\cdots+O\left(x^{j}\right)
$$

so the product $\sin (x)\left(e^{-x^{2}}-1\right)$ will contain terms

$$
x O\left(x^{j}\right)=O\left(x^{j+1}\right)
$$

and

$$
-x^{2} O\left(x^{k}\right)=O\left(x^{k+2}\right)
$$

Therefore we must have

$$
j+1 \geq 6 \Rightarrow j \geq 5 \text { and } \quad k+2 \geq 6 \Rightarrow k \geq 4
$$

We could try

$$
\sin (x)=x-\frac{x^{3}}{6}+O\left(x^{4}\right) \quad \text { and } \quad e^{-x^{2}}-1=-x^{2}+\frac{x^{4}}{2}+O\left(x^{5}\right)
$$

Big-O Arithmetic

Example: Find the 8th degree Taylor Polynomial for $f(x)=x^{3} \sin (x)\left(e^{-x^{2}}-1\right)$ centered at $x=0$.

Solution (continued): We have

$$
\begin{aligned}
\sin (x)\left(e^{-x^{2}}-1\right) & =\left(x-\frac{x^{3}}{6}+O\left(x^{4}\right)\right)\left(-x^{2}+\frac{x^{4}}{2}+O\left(x^{5}\right)\right) \\
& =-x^{3}+\frac{x^{5}}{2}+\frac{x^{5}}{6}+O\left(x^{6}\right) \\
& =-x^{3}+\frac{2}{3} x^{5}+O\left(x^{6}\right)
\end{aligned}
$$

and hence

$$
x^{3} \sin (x)\left(e^{-x^{2}}-1\right)=-x^{6}+\frac{2}{3} x^{8}+O\left(x^{9}\right)
$$

This shows

$$
T_{8,0}(x)=-x^{6}+\frac{2}{3} x^{8}
$$

Big-O Arithmetic

Example: If $f(x)=x^{3} \sin (x)\left(e^{-x^{2}}-1\right)$, find $f^{(5)}(0)$ and $f^{(8)}(0)$.
Solution: We know that the coefficient a_{k} of x^{k} in the Taylor Polynomial
is $\frac{f^{(k)}(0)}{k!}$ so

$$
f^{(k)}(0)=a_{k} \cdot k!
$$

Since

$$
T_{8,0}(x)=-x^{6}+\frac{2}{3} x^{8}
$$

we have

$$
f^{(5)}(0)=a_{5} \cdot 5!=0 \cdot 5!=0
$$

and

$$
f^{(8)}(0)=a_{8} \cdot 8!=\frac{2}{3} \cdot 8!
$$

