Big-O Notation: Calculating Taylor Polynomials

Created by

Barbara Forrest and Brian Forrest

Taylor's Approximation Theorem II

Theorem: [Taylor's Approximation Theorem II]

Let r > 0. If f(x) is (n + 1)-times differentiable on [-r, r] and $f^{(n+1)}(x)$ is continuous on [-r, r], then

$$f(x) = T_{n,0}(x) + O(x^{n+1})$$

as $x \to 0$.

Question: We know that

$$\cos(x^2) - 1 = T_{7,0}(x) + O(x^8).$$

We can show that

$$\cos(x^2) - 1 = -\frac{x^4}{2} + O(x^8).$$

Does this mean that

$$T_{7,0}(x) = -\frac{x^4}{2}?$$

Taylor's Approximation Theorem II

Theorem: [Characterization of Taylor Polynomials]

Assume that r > 0. Assume also that f(x) is (n + 1)-times differentiable on [-r, r] and $f^{(n+1)}(x)$ is continuous on [-r, r]. If p(x) is a polynomial of degree n or less with

$$f(x) = p(x) + O(x^{n+1}),$$

then $p(x) = T_{n,0}(x)$.

Example: We have that

$$\cos(x^2) - 1 = -\frac{x^4}{2} + O(x^8)$$

SO

$$T_{7,0}(x) = -rac{x^4}{2}.$$

We also have

$$T_{3,0}(x)=0$$
 and $T_{4,0}(x)=-rac{x^4}{2}$

Taylor's Approximation Theorem II

Example: Let $f(x) = x^2(e^x - 1)\sin(x^2)$. Find $T_{5,0}(x)$ and in particular, find $f^{(4)}(0)$ and $f^{(5)}(0)$.

Solution: We know that

$$\sin(u) = u + O(u^3) \Rightarrow \sin(x^2) = x^2 + O(x^6).$$

Observe also that

$$e^{x} = 1 + x + O(x^{2}) \Rightarrow e^{x} - 1 = x + O(x^{2}).$$

Then

$$\begin{split} f(x) &= x^2(e^x-1)\sin(x^2) = x^2(x+O(x^2))(x^2+O(x^6)) \\ &= (x^3+O(x^4))(x^2+O(x^6)) \\ &= x^5+O(x^9)+O(x^6)+O(x^{10}) \\ &= x^5+O(x^6). \end{split}$$

The Characterization of Taylor Polynomials Theorem tells us that $x^5 = T_{5,0}(x)$. Since

$$T_{5,0}(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \frac{f^{(4)}(0)}{4!}x^4 + \frac{f^{(5)}(0)}{5!}x^5,$$

by matching coefficients, we get that $0 = \frac{f^{(4)}(0)}{4!}$ and $1 = \frac{f^{(5)}(0)}{5!}$. It follows that $f^{(4)}(0) = 0$ and $f^{(5)}(0) = 5! = 120$.

Big-O Arithmetic

Example: Find the 8th degree Taylor Polynomial for $f(x) = x^3 \sin(x)(e^{-x^2} - 1)$ centered at x = 0.

Question: How accurate do our estimates of sin(x) and $e^{-x^2} - 1$ have to be? **Solution:** Because of the x^3 term we want the error in the product

 $\sin(x)(e^{-x^2}-1)$ to be $O(x^6)$ or better since $x^3O(x^6)=O(x^9)$ or better. Now x^3-x^5

$$\sin(x) = x - \frac{x^3}{6} + \frac{x^3}{120} + \dots + O(x^k)$$

and

$$e^{-x^2} - 1 = -x^2 + rac{x^4}{2} - rac{x^6}{6} + \dots + O(x^j)$$

so the product $\sin(x)(e^{-x^2}-1)$ will contain terms

$$xO(x^j) = O(x^{j+1})$$

and

$$-x^2 O(x^k) = O(x^{k+2}).$$

Therefore we must have

$$j+1 \ge 6 \Rightarrow j \ge 5$$
 and $k+2 \ge 6 \Rightarrow k \ge 4$.

We could try

$$\sin(x) = x - \frac{x^3}{6} + O(x^4)$$
 and $e^{-x^2} - 1 = -x^2 + \frac{x^4}{2} + O(x^5)$.

Big-O Arithmetic

Example: Find the 8th degree Taylor Polynomial for $f(x) = x^3 \sin(x)(e^{-x^2} - 1)$ centered at x = 0.

Solution (continued): We have

$$\sin(x)(e^{-x^2} - 1) = (x - \frac{x^3}{6} + O(x^4))(-x^2 + \frac{x^4}{2} + O(x^5))$$
$$= -x^3 + \frac{x^5}{2} + \frac{x^5}{6} + O(x^6)$$
$$= -x^3 + \frac{2}{3}x^5 + O(x^6)$$

and hence

$$x^{3}\sin(x)(e^{-x^{2}}-1) = -x^{6} + \frac{2}{3}x^{8} + O(x^{9}).$$

This shows

$$T_{8,0}(x) = -x^6 + rac{2}{3}x^8$$

Big-O Arithmetic

Example: If $f(x) = x^3 \sin(x)(e^{-x^2} - 1)$, find $f^{(5)}(0)$ and $f^{(8)}(0)$.

Solution: We know that the coefficient a_k of x^k in the Taylor Polynomial

is $\frac{f^{(k)}(0)}{k!}$ so $f^{(k)}(0) = a_k \cdot k!$ Since $T_{8,0}(x)=-x^6+rac{2}{2}x^8$ we have $f^{(5)}(0) = a_5 \cdot 5! = 0 \cdot 5! = 0$ and $f^{(8)}(0) = a_8 \cdot 8! = \frac{2}{3} \cdot 8!$