# Big-O Notation 

Created by

Barbara Forrest and Brian Forrest

## Motivation

Suppose we know that

$$
\lim _{x \rightarrow 0} f(x)=0 .
$$

Question: How quickly does $f(x)$ approach 0 ?

For example, consider

$$
\lim _{x \rightarrow 0} x^{2}=0=\lim _{x \rightarrow 0}\left|x^{17}\right| .
$$

Which function approaches the limit $L=0$ more quickly?

## The Behavior of $|x|^{n}$



Example: Consider the functions $\left|x^{n}\right|$. The larger the value of $n$, the faster $\boldsymbol{x}^{\boldsymbol{n}}$ approaches 0 .

## Big-O Notation

## Definition: [Big-O Notation]

We say that $\boldsymbol{f}(\boldsymbol{x})$ is Big-O of $\boldsymbol{g}(\boldsymbol{x})$ as $\boldsymbol{x} \rightarrow \boldsymbol{a}$ if there exists an $\boldsymbol{\epsilon}>\boldsymbol{0}$ and an $M>0$ such that

$$
|f(x)| \leq M|g(x)|
$$

for all $\boldsymbol{x} \in(\boldsymbol{a}-\boldsymbol{\epsilon}, \boldsymbol{a}+\boldsymbol{\epsilon})$ except possibly at $\boldsymbol{x}=\boldsymbol{a}$.
In this case, we write

$$
f(x)=O(g(x)) \text { as } x \rightarrow a
$$

or simply $f(x)=O(g(x))$ if $a$ is understood.
If $f(x)$ is Big-O of $g(x)$ as $x \rightarrow a$, then we say that $f(x)$ has order of magnitude that is less than or equal to that of $g(x)$ near $x=a$.
$O\left(x^{n}\right)$

Question: What do we know if

$$
f(x)=O\left(x^{n}\right) ?
$$

This means that there exists an $M>0$ so that

$$
-M\left|x^{n}\right| \leq f(x) \leq M\left|x^{n}\right|
$$

for all $\boldsymbol{x} \in(-\epsilon, \epsilon)$ except possibly at $\boldsymbol{x}=\mathbf{0}$. Since

$$
\lim _{x \rightarrow 0}-M\left|x^{n}\right|=0=\lim _{x \rightarrow 0} M\left|x^{n}\right|
$$

the Squeeze Theorem shows that

$$
\lim _{x \rightarrow 0} f(x)=0
$$

## Big-O Notation

## Definition: [Extended Big-O Notation]

Suppose that $f(x), g(x)$ and $h(x)$ are defined on an open interval containing $x=a$, except possibly at $x=a$. We write

$$
f(x)=g(x)+O(h(x)) \text { as } x \rightarrow \boldsymbol{a}
$$

if

$$
f(x)-g(x)=O(h(x)) \text { as } x \rightarrow a .
$$

We may omit the $x \rightarrow a$ condition if $a$ is understood.

Remark: The notation $f(x)=g(x)+O(h(x))$ tells us that $f(x) \approx g(x)$ near $x=a$ with an error that is an order of magnitude at most that of $h(x)$.

## The Behavior of $\sin (x)$

Example: Consider $f(x)=\sin (x)$. By Taylor's Theorem we get that if $x \in[-1,1]$, there exists some $c$ between $x$ and 0 such that

$$
\left|\sin (x)-T_{1,0}(x)\right|=|\sin (x)-x|=\left|\frac{f^{\prime \prime}(c)}{2!} x^{2}\right|=\left|\frac{-\sin (c)}{2} x^{2}\right| \leq \frac{1}{2}\left|x^{2}\right|
$$

Hence,

$$
\sin (x)-x=O\left(x^{2}\right)
$$

so that

$$
\sin (x)=x+O\left(x^{2}\right)
$$

That is, $\boldsymbol{T}_{1,0}(x)=L_{0}(x)=x$ approximates the function $f(x)=\sin (x)$ near $\boldsymbol{x}=\mathbf{0}$ with an error that is an order of magnitude of at most $\boldsymbol{x}^{2}$.
Since $T_{1,0}(x)=T_{2,0}(x)$ for $\sin (x)$, we can interpret $x$ as $T_{2,0}(x)$ instead of $\boldsymbol{T}_{1,0}(x)$. If we apply Taylor's Theorem again using $\boldsymbol{T}_{2,0}(\boldsymbol{x})$, we get that

$$
\sin (x)=x+O\left(x^{3}\right)
$$

This is a stronger statement because $x^{3}$ is an order of magnitude smaller than $x^{2}$ near $x=0$ and as such the approximation $\sin (x) \cong x$ is even better than was suggested above.

## Taylor's Approximation Theorem II

Theorem: [Taylor's Approximation Theorem II]
Let $r>0$. If $f(x)$ is $(n+1)$-times differentiable on $[-r, r]$ and $f^{(n+1)}(x)$ is continuous on $[-r, r]$, then

$$
f(x)=T_{n, 0}(x)+O\left(x^{n+1}\right)
$$

as $\boldsymbol{x} \rightarrow \mathbf{0}$.

Proof: By the Extreme Value Theorem, $\boldsymbol{M}$ can be chosen so that

$$
\left|f^{(n+1)}(x)\right| \leq M
$$

for all $\boldsymbol{x} \in[-r, r]$.
Taylor's Theorem implies that for any $\boldsymbol{x} \in[-r, r]$, there exists a $\boldsymbol{c}$ between $\boldsymbol{x}$ and 0 so that

$$
\left|f(x)-T_{n, 0}(x)\right|=\left|\frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}\right| \leq\left|\frac{M}{(n+1)!} x^{n+1}\right|=\frac{M}{(n+1)!}\left|x^{n+1}\right|
$$

Therefore,

$$
f(x)-T_{n, 0}(x)=O\left(x^{n+1}\right) \Rightarrow f(x)=T_{n, 0}(x)+O\left(x^{n+1}\right)
$$

as $\boldsymbol{x} \rightarrow \mathbf{0}$.

