Arithmetic with Big-O Notation

Created by

Barbara Forrest and Brian Forrest

Big-O Notation

Definition: [Big-O Notation]

We say that f(x) is Big-O of g(x) as $x \to a$ if there exists an $\epsilon > 0$ and an M > 0 such that

$$|f(x)| \le M|g(x)|$$

for all $x \in (a - \epsilon, a + \epsilon)$ except possibly at x = a.

In this case, we write

$$f(x) = O(g(x))$$
 as $x \to a$.

We can write

$$f(x) = g(x) + O(h(x))$$
 as $x \to a$

if

$$f(x) - g(x) = O(h(x))$$
 as $x \to a$.

Big-O Notation

Theorem: [Taylor's Approximation Theorem II]

Let r>0. If f(x) is (n+1)-times differentiable on [-r,r] and $f^{(n+1)}(x)$ is continuous on [-r,r], then

$$f(x) = T_{n,0}(x) + O(x^{n+1})$$

as $x \to 0$.

Big-O Notation

Theorem: [Taylor's Approximation Theorem II]

Let r>0. If f(x) is (n+1)-times differentiable on [-r,r] and $f^{(n+1)}(x)$ is continuous on [-r,r], then

$$f(x) = T_{n,0}(x) + O(x^{n+1})$$

as $x \to 0$.

Question: Assume that

$$f(x) = O(x^2)$$
 as $x \to 0$

and

$$g(x) = O(x^3)$$
 as $x \to 0$.

What can we say about

$$h(x) = f(x) + q(x)?$$

Big-O and Sums

Observation: Assume that

$$f(x) = O(x^2), \quad g(x) = O(x^3) \text{ as } x \to 0.$$

Then we can find an $0<\epsilon\leq 1$ and two constants $M_1,M_2>0$ so that

$$|f(x)| < M_1|x^2|$$

and

$$|g(x)| \le M_2|x^3|$$

for all $x \in [-\epsilon, \epsilon]$, except possibly at x = 0.

If $x \in [-\epsilon, \epsilon]$ with $x \neq 0$, then

$$|f(x) + g(x)| \leq |f(x)| + |g(x)|$$

$$\leq M_1|x^2| + M_2|x^3|$$

$$\leq M_1|x^2| + M_2|x^2|$$

$$= (M_1 + M_2)|x^2|$$

Hence $f(x) + g(x) = O(x^2)$ as $x \to 0$.

Big-O and Sums

Observation: In general, if

$$f(x) = O(x^n)$$
 and $g(x) = O(x^m)$ as $x \to 0$,

then

$$f(x) + g(x) = O(x^k)$$
 as $x \to 0$

where

$$k=\min\{n,m\}.$$

That is, the potential error in a sum is at least as large as the error in either part.

We write

$$O(x^n) + O(x^m) = O(x^k)$$

where

$$k = \min\{n, m\}.$$

Theorem: [Arithmetic of Big-O]

Assume that $f(x)=O(x^n)$ and $g(x)=O(x^m)$ as $x\to 0$, for some $m,n\in\mathbb{N}$. Let $k\in\mathbb{N}$. Then we have the following:

- 1) $c(O(x^n)) = O(x^n)$. That is, $(cf)(x) = c \cdot f(x) = O(x^n)$.
- 2) $O(x^n) + O(x^m) = O(x^k)$, where $k = \min\{n, m\}$. That is, $f(x) \pm g(x) = O(x^k)$.
- 3) $O(x^n)O(x^m) = O(x^{n+m})$. That is, $f(x)g(x) = O(x^{n+m})$.
- 4) If $k \leq n$, then $f(x) = O(x^k)$.
- 5) If $k \leq n$, then $\frac{1}{x^k}O(x^n) = O(x^{n-k})$. That is, $\frac{f(x)}{x^k} = O(x^{n-k})$.
- 6) $f(u^k) = O(u^{kn})$. That is, we can simply substitute $x = u^k$.

Note: In fact (5) is true if we replace x^k by x^{α} for any $\alpha \in \mathbb{R}$.

Example: Show that $f(x) = \cos(x^2) - 1 = -\frac{x_4}{2} + O(x^8)$. Use this result to evaluate

$$\lim_{x \to 0} \frac{\cos(x^2) - 1}{x^4}.$$

Solution: We begin by observing that if $g(u) = \cos(u)$, then since the third degree Taylor polynomial for g(u) centered at u = 0 is

$$T_{3,0}(u)=1-rac{u^2}{2}$$

Taylor's Approximation Theorem II gives us that

$$g(u) = 1 - \frac{u^2}{2} + O(u^4).$$

Arithmetic Rule (6) allows us to substitute x^2 for u to get

$$\cos(x^2) = g(x^2) = 1 - \frac{(x^2)^2}{2} + O((x^2)^4) = 1 - \frac{x^4}{2} + O(x^8).$$

Then

$$f(x) = \cos(x^2) - 1 = -\frac{x^4}{2} + O(x^8).$$

Example (continued): Show that $f(x) = \cos(x^2) - 1 = -\frac{x_4}{2} + O(x^8)$.

Use this result to evaluate

$$\lim_{x \to 0} \frac{\cos(x^2) - 1}{x^4}$$

Solution (continued):

To evaluate

$$\lim_{x \to 0} \frac{\cos(x^2) - 1}{x^4}$$

we use the Arithmetic Rules to get

$$\lim_{x \to 0} \frac{\cos(x^2) - 1}{x^4} = \lim_{x \to 0} \frac{-\frac{x^4}{2} + O(x^8)}{x^4}$$
$$= \lim_{x \to 0} -\frac{1}{2} + O(x^4)$$
$$= -\frac{1}{2}$$

since

$$\lim_{x \to 0} O(x^n) = 0$$

for every n > 0.

Example: Let $f(x) = \sin(x)(e^{-x^2} - 1)$. Show that

$$f(x) = -x^3 + O(x^5).$$

Solution: We know that

$$\sin(x) = x + O(x^3)$$

and that

$$e^{u} = 1 + u + O(u^{2}) \Rightarrow e^{u} - 1 = u + O(u^{2}) \Rightarrow e^{-x^{2}} - 1 = -x^{2} + O(x^{4})$$

since

$$O((-x^2)^2) = O(x^4).$$

Therefore using the Arithmetic Rules for Big-O:

$$\sin(x)(e^{-x^2} - 1) = (x + O(x^3))(-x^2 + O(x^4))$$

$$= -x^3 + xO(x^4) + (-x^2)O(x^3) + O(x^3)O(x^4)$$

$$= -x^3 + O(x^5) + O(x^5) + O(x^7)$$

$$= -x^3 + O(x^5).$$

Important Remark: Suppose

$$f(x) = 1 - x^2 + O(x^4)$$

and

$$g(x) = x + O(x^2).$$

Then

$$\begin{split} f(x)g(x) &= (1-x^2+O(x^4))(x+O(x^2)) \\ &= 1\cdot x + 1\cdot O(x^2) - x^2\cdot x - x^2\cdot O(x^2) + x\cdot O(x^4) + O(x^4)\cdot O(x^2) \\ &= x + O(x^2) - x^3 + O(x^4) + O(x^5) + O(x^6) \\ &= x + O(x^2) + O(x^3) + O(x^4) + O(x^5) + O(x^6) \\ &= x + O(x^2) \end{split}$$

since once we have the term $O(x^2)$, all higher degree terms (such as x^3) do not add any additional accuracy to the estimate.