Arithmetic with Big-O Notation Part 2

Created by

Barbara Forrest and Brian Forrest

Big-O and Sums

Recall: If,

$$
f(x)=O\left(x^{n}\right) \text { and } g(x)=O\left(x^{m}\right) \quad \text { as } x \rightarrow 0
$$

then

$$
f(x)+g(x)=O\left(x^{k}\right) \text { as } x \rightarrow 0
$$

where

$$
k=\min \{n, m\} .
$$

We write

$$
O\left(x^{n}\right)+O\left(x^{m}\right)=O\left(x^{k}\right)
$$

where

$$
k=\min \{n, m\}
$$

Big-O Arithmetic

Theorem: [Arithmetic of Big-O]

Assume that $f(x)=O\left(x^{n}\right)$ and $g(x)=O\left(x^{m}\right)$ as $x \rightarrow 0$, for some $m, n \in \mathbb{N}$. Let $k \in \mathbb{N}$. Then we have the following:

1) $c\left(O\left(x^{n}\right)\right)=O\left(x^{n}\right)$. That is, $(c f)(x)=c \cdot f(x)=O\left(x^{n}\right)$.
2) $O\left(x^{n}\right)+O\left(x^{m}\right)=O\left(x^{k}\right)$, where $k=\min \{n, m\}$. That is, $f(x) \pm g(x)=O\left(x^{k}\right)$.
3) $O\left(x^{n}\right) O\left(x^{m}\right)=O\left(x^{n+m}\right)$. That is, $f(x) g(x)=O\left(x^{n+m}\right)$.
4) If $k \leq n$, then $f(x)=O\left(x^{k}\right)$.
5) If $k \leq n$, then $\frac{1}{x^{k}} O\left(x^{n}\right)=O\left(x^{n-k}\right)$. That is, $\frac{f(x)}{x^{k}}=O\left(x^{n-k}\right)$.
6) $f\left(u^{k}\right)=O\left(u^{k n}\right)$. That is, we can simply substitute $x=u^{k}$.

Note: In fact (5) is true if we replace x^{k} by x^{α} for any $\alpha \in \mathbb{R}$.

Big-O Arithmetic

Example: Show that $f(x)=\cos \left(x^{2}\right)-1=-\frac{x_{4}}{2}+O\left(x^{8}\right)$. Use this result to evaluate

$$
\lim _{x \rightarrow 0} \frac{\cos \left(x^{2}\right)-1}{x^{4}}
$$

Solution: We begin by observing that if $g(u)=\cos (u)$, then since the third degree Taylor polynomial for $\boldsymbol{g}(u)$ centered at $u=0$ is

$$
T_{3,0}(u)=1-\frac{u^{2}}{2}
$$

Taylor's Approximation Theorem II gives us that

$$
g(u)=1-\frac{u^{2}}{2}+O\left(u^{4}\right)
$$

Arithmetic Rule (6) allows us to substitute x^{2} for u to get

$$
\cos \left(x^{2}\right)=g\left(x^{2}\right)=1-\frac{\left(x^{2}\right)^{2}}{2}+O\left(\left(x^{2}\right)^{4}\right)=1-\frac{x^{4}}{2}+O\left(x^{8}\right) .
$$

Then

$$
f(x)=\cos \left(x^{2}\right)-1=-\frac{x^{4}}{2}+O\left(x^{8}\right)
$$

Big-O Arithmetic

Example (continued): Show that $f(x)=\cos \left(x^{2}\right)-1=-\frac{x_{4}}{2}+O\left(x^{8}\right)$. Use this result to evaluate

$$
\lim _{x \rightarrow 0} \frac{\cos \left(x^{2}\right)-1}{x^{4}}
$$

Solution (continued): To evaluate

$$
\lim _{x \rightarrow 0} \frac{\cos \left(x^{2}\right)-1}{x^{4}}
$$

we use the Arithmetic Rules to get

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\cos \left(x^{2}\right)-1}{x^{4}} & =\lim _{x \rightarrow 0} \frac{-\frac{x^{4}}{2}+O\left(x^{8}\right)}{x^{4}} \\
& =\lim _{x \rightarrow 0}-\frac{1}{2}+O\left(x^{4}\right) \\
& =-\frac{1}{2}
\end{aligned}
$$

since

$$
\lim _{x \rightarrow 0} O\left(x^{n}\right)=0
$$

for every $\boldsymbol{n}>\mathbf{0}$.

Big-O Arithmetic

Example: Let $f(x)=\sin (x)\left(e^{-x^{2}}-1\right)$. Show that

$$
f(x)=-x^{3}+O\left(x^{5}\right) .
$$

Solution: We know that

$$
\sin (x)=x+O\left(x^{3}\right)
$$

and that
$e^{u}=1+u+O\left(u^{2}\right) \Rightarrow e^{u}-1=u+O\left(u^{2}\right) \Rightarrow e^{-x^{2}}-1=-x^{2}+O\left(x^{4}\right)$
since

$$
O\left(\left(-x^{2}\right)^{2}\right)=O\left(x^{4}\right)
$$

Therefore using the Arithmetic Rules for Big-O:

$$
\begin{aligned}
\sin (x)\left(e^{-x^{2}}-1\right) & =\left(x+O\left(x^{3}\right)\right)\left(-x^{2}+O\left(x^{4}\right)\right) \\
& =-x^{3}+x O\left(x^{4}\right)+\left(-x^{2}\right) O\left(x^{3}\right)+O\left(x^{3}\right) O\left(x^{4}\right) \\
& =-x^{3}+O\left(x^{5}\right)+O\left(x^{5}\right)+O\left(x^{7}\right) \\
& =-x^{3}+O\left(x^{5}\right)
\end{aligned}
$$

Big O Arithmetic

Important Remark: Suppose

$$
f(x)=1-x^{2}+O\left(x^{4}\right)
$$

and

$$
g(x)=x+O\left(x^{2}\right) .
$$

Then

$$
\begin{aligned}
& f(x) g(x)=\left(1-x^{2}+O\left(x^{4}\right)\right)\left(x+O\left(x^{2}\right)\right) \\
& =1 \cdot x+1 \cdot O\left(x^{2}\right)-x^{2} \cdot x-x^{2} \cdot O\left(x^{2}\right)+x \cdot O\left(x^{4}\right)+O\left(x^{4}\right) \cdot O\left(x^{2}\right) \\
& =x+O\left(x^{2}\right)-x^{3}+O\left(x^{4}\right)+O\left(x^{5}\right)+O\left(x^{6}\right) \\
& =x+O\left(x^{2}\right)+O\left(x^{3}\right)+O\left(x^{4}\right)+O\left(x^{5}\right)+O\left(x^{6}\right) \\
& =x+O\left(x^{2}\right)
\end{aligned}
$$

since once we have the term $\boldsymbol{O}\left(\boldsymbol{x}^{2}\right)$, all higher degree terms (such as x^{3}) do not add any additional accuracy to the estimate.

