Arithmetic with Big-O Notation Part 2

Created by

Barbara Forrest and Brian Forrest

Big-O and Sums

Recall: If,

$$f(x)=O(x^n)$$
 and $g(x)=O(x^m)$ as $x
ightarrow 0,$

then

$$f(x) + g(x) = O(x^k)$$
 as $x o 0$

where

$$k = \min\{n, m\}.$$

We write

$$O(x^n) + O(x^m) = O(x^k)$$

where

$$k = \min\{n, m\}.$$

Theorem: [Arithmetic of Big-O]

Assume that $f(x) = O(x^n)$ and $g(x) = O(x^m)$ as $x \to 0$, for some $m, n \in \mathbb{N}$. Let $k \in \mathbb{N}$. Then we have the following:

- 1) $c(O(x^n)) = O(x^n)$. That is, $(cf)(x) = c \cdot f(x) = O(x^n)$.
- 2) $O(x^n) + O(x^m) = O(x^k)$, where $k = \min\{n, m\}$. That is, $f(x) \pm g(x) = O(x^k)$.
- 3) $O(x^n)O(x^m) = O(x^{n+m})$. That is, $f(x)g(x) = O(x^{n+m})$.

4) If
$$k \leq n$$
, then $f(x) = O(x^k)$.

- 5) If $k \leq n$, then $\frac{1}{x^k}O(x^n) = O(x^{n-k})$. That is, $\frac{f(x)}{x^k} = O(x^{n-k})$.
- 6) $f(u^k) = O(u^{kn})$. That is, we can simply substitute $x = u^k$.

Note: In fact (5) is true if we replace x^k by x^{α} for any $\alpha \in \mathbb{R}$.

Example: Show that $f(x) = \cos(x^2) - 1 = -\frac{x_4}{2} + O(x^8)$. Use this result to evaluate $\cos(x^2) = 1$

$$\lim_{x \to 0} \frac{\cos(x^2) - 1}{x^4}.$$

Solution: We begin by observing that if g(u) = cos(u), then since the third degree Taylor polynomial for g(u) centered at u = 0 is

$$T_{3,0}(u)=1-rac{u^2}{2}$$

Taylor's Approximation Theorem II gives us that

$$g(u) = 1 - rac{u^2}{2} + O(u^4).$$

Arithmetic Rule (6) allows us to substitute x^2 for u to get

$$\cos(x^2) = g(x^2) = 1 - \frac{(x^2)^2}{2} + O((x^2)^4) = 1 - \frac{x^4}{2} + O(x^8).$$

Then

$$f(x) = \cos(x^2) - 1 = -\frac{x^4}{2} + O(x^8).$$

Example (continued): Show that $f(x) = \cos(x^2) - 1 = -\frac{x_4}{2} + O(x^8)$.

Use this result to evaluate

$$\lim_{x \to 0} \frac{\cos(x^2) - 1}{x^4}$$

Solution (continued):

To evaluate

$$\lim_{x\to 0} \frac{\cos(x^2)-1}{x^4}$$

we use the Arithmetic Rules to get

$$\lim_{x \to 0} \frac{\cos(x^2) - 1}{x^4} = \lim_{x \to 0} \frac{-\frac{x^4}{2} + O(x^8)}{x^4}$$
$$= \lim_{x \to 0} -\frac{1}{2} + O(x^4)$$
$$= -\frac{1}{2}$$

since

 $\lim_{x\to 0} O(x^n) = 0$

for every n > 0.

Example: Let
$$f(x) = \sin(x)(e^{-x^2} - 1)$$
. Show that

$$f(x) = -x^3 + O(x^5)$$

Solution: We know that

$$\sin(x) = x + O(x^3)$$

and that

$$e^{u} = 1 + u + O(u^{2}) \Rightarrow e^{u} - 1 = u + O(u^{2}) \Rightarrow e^{-x^{2}} - 1 = -x^{2} + O(x^{4})$$

since

$$O((-x^2)^2) = O(x^4).$$

Therefore using the Arithmetic Rules for Big-O:

$$\sin(x)(e^{-x^{2}} - 1) = (x + O(x^{3}))(-x^{2} + O(x^{4}))$$

= $-x^{3} + xO(x^{4}) + (-x^{2})O(x^{3}) + O(x^{3})O(x^{4})$
= $-x^{3} + O(x^{5}) + O(x^{5}) + O(x^{7})$
= $-x^{3} + O(x^{5}).$

Important Remark: Suppose

$$f(x) = 1 - x^2 + O(x^4)$$

and

$$g(x) = x + O(x^2).$$

Then

$$\begin{aligned} f(x)g(x) &= (1 - x^2 + O(x^4))(x + O(x^2)) \\ &= 1 \cdot x + 1 \cdot O(x^2) - x^2 \cdot x - x^2 \cdot O(x^2) + x \cdot O(x^4) + O(x^4) \cdot O(x^2) \\ &= x + O(x^2) - x^3 + O(x^4) + O(x^5) + O(x^6) \\ &= x + O(x^2) + O(x^3) + O(x^4) + O(x^5) + O(x^6) \\ &= x + O(x^2) \end{aligned}$$

since once we have the term $O(x^2)$, all higher degree terms (such as x^3) do not add any additional accuracy to the estimate.