Applications of the MVT: The Second Derivative Test

Created by
Barbara Forrest and Brian Forrest

Critical Points and Concavity

Problem: Given a critical point c for $f(x)$ with $f^{\prime}(c)=0$, does concavity help us determine whether c is either a local maximum or a local minimum?

1) If $f(x)$ is concave downwards on an interval containing $x=c$, then ($c, f(c)$) should be a local maximum.
2) If $f(x)$ is concave upwards on an interval containing $x=c$, then ($c, f(c))$ should be a local minimum.

The Second Derivative Test:

Theorem: [Second Derivative Test]

Assume that $f^{\prime}(c)=0$ and that $f^{\prime \prime}(x)$ is continuous at $x=c$.
i) If $f^{\prime \prime}(c)<0$, then $f(x)$ has a local maximum at c.
ii) If $f^{\prime \prime}(c)>0$, then $f(x)$ has a local minimum at c.

The Second Derivative Test

Example: Let

Then

$$
f(x)=\frac{x^{3}}{3}-x
$$

$$
f^{\prime}(x)=x^{2}-1
$$

so the critical points are $x=-1$ and $x=1$.
We have $f^{\prime \prime}(x)=2 x$. Since
i) $f^{\prime \prime}(-1)<0$, then $f(x)$ has a local maximum at $x=-1$.
ii) $f^{\prime \prime}(1)>0$, then $f(x)$ has a local minimum at $x=1$.

Extreme Value Theorem

Theorem: [The Extreme Value Theorem (EVT)]
Suppose that $f(x)$ is continuous on $[a, b]$. There exists c_{1} and $c_{2} \in[a, b]$ such that

$$
f\left(c_{1}\right) \leq f(x) \leq f\left(c_{2}\right)
$$

for all $x \in[a, b]$.

Extreme Value Theorem

Observation: The EVT ensures that a continuous function $f(x)$ defined on a closed interval $[a, b]$ achieves its global maximum and global minimum on $[a, b]$, but it does not tell us how to find these values.

Important Fact: Assume that $f(x)$ has either a global maximum or global minimum at $c \in[a, b]$. Then either

1) c is an endpoint of the interval $[a, b] \Rightarrow c=a$ or $c=b$
or
2) c is not an endpoint of the interval $[a, b] \Rightarrow c \in(a, b)$ is a local maximum or local minimum $\Rightarrow c$ is a critical point.

Global Maxima and Global Minima

Summary [Finding the Global Maximum and Global Minimum]
To find the maximum and minimum for a continuous function $f(x)$ on $[a, b]$:

Step 1: Evaluate $f(a)$ and $f(b)$.
Step 2: Find all critical points c in (a, b) such that $f^{\prime}(c)=0$ and $f^{\prime}(c)$ does not exist, where applicable.
Step 3: Evaluate the function at each of the critical points.
Step 4: The global maximum is at the point that produces the largest value from Steps 1 and 3. The global minimum is at the point that produces the smallest value from Steps 1 and 3.

Global Maxima and Global Minima

Example: Let

$$
f(x)=\frac{x^{3}}{3}-x
$$

Find the maximum and minimum values of $f(x)$ on $[-3,2]$.

Solution:

Step 1: Evaluate endpoints: $f(-3)=-6$ and $f(2)=\frac{2}{3}$.
Step 2: Since $f^{\prime}(x)=x^{2}-1$ the critical points are $x= \pm 1$.
Step 3: $f(-1)=\frac{2}{3}$ and $f(1)=-\frac{2}{3}$.
Step 4: The global maximum is at both $x=-1$ and $x=2$ where the maximum value is $\frac{2}{3}$. The global minimum is at $x=-3$ where the minimum value is -6 .

