Mean Value Theorem

Created by
Barbara Forrest and Brian Forrest

A Problem

Problem: A car travels forward a distance of 110 km in one hour along a road with a posted speed limit of $100 \mathrm{~km} / \mathrm{hr}$. Prove that at some point in the journey the car was speeding.

Average velocity $=110 \mathrm{~km} / \mathrm{hr}$.
At t_{0} the tangent line is parallel to the secant line $\Rightarrow v\left(t_{o}\right)=110 \mathrm{~km} / \mathrm{hr}$.

Generic Case

Question: Is there always a point at which the instantaneous rate of change equals the average rate of change?

Average rate of change $=\frac{f(b)-f(a)}{b-a}$

$$
=f^{\prime}(c) ?
$$

Rolle's Theorem

Theorem: [Rolle's Theorem]
Assume that $f(x)$ is continuous on $[a, b]$, differentiable on (a, b), and that $f(a)=0=f(b)$.

Then there exists a $c \in(a, b)$ with

$$
f^{\prime}(c)=0 .
$$

Proof:

Case 1: $f(x)=0$ for all $x \in[a, b] \Rightarrow f^{\prime}(c)=0$ for any $c \in(a, b)$.
Case 2: $f(x) \neq 0$ for some $x \in[a, b]$.
Then $f(x)$ either attains its maximum at some point $c \in(a, b)$ and $f^{\prime}(c)=0$, or $f(x)$ attains its minimum at some point $c \in(a, b)$ and $f^{\prime}(c)=0$.

Mean Value Theorem

Theorem: [Mean Value Theorem]
Assume that $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b). Then there exists a $c \in(a, b)$ with

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Geometric Proof

$\square f(x)$
$\square g(x)=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)$
$H(x)=f(x)-g(x)$

Analytic Proof

Let

$$
g(x)=f(a)+\frac{f(b)-f(a)}{b-a}(x-a) \Rightarrow g^{\prime}(x)=\frac{f(b)-f(a)}{b-a}
$$

for all $x \in(a, b)$. Let $\boldsymbol{H}(x)=f(x)-g(x)$. Then

$$
\left.\begin{array}{l}
H(a)=f(a)-\left(f(a)+\frac{f(b)-f(a)}{b-a}(a-a)\right)=f(a)-f(a)=0 \\
H(b) \\
=f(b)-\left(f(a)+\frac{f(b)-f(a)}{b-a}(b-a)\right) \\
\\
=f(b)-(f(a)+f(b)-f(a)) \\
\end{array}\right)=0.1 .
$$

Rolle's Theorem \Rightarrow there exists a $c \in(a, b)$ such that

$$
\begin{aligned}
0=H^{\prime}(c)=f^{\prime}(c)-g^{\prime}(c) & =f^{\prime}(c)-\frac{f(b)-f(a)}{b-a} \\
& \Rightarrow f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
\end{aligned}
$$

Problem: Two runners compete in a 100 m race. If they finish the race in exactly the same amount of time $t_{\boldsymbol{f}}$, show that there exists some time $c \in\left(0, t_{f}\right)$ such that at time c the two runners were traveling exactly the same speed.

