Created by

Barbara Forrest and Brian Forrest

Recall: If $h(x) = \frac{f(x)}{g(x)}$ and if

$$\lim_{x \to a} f(x) = 0 = \lim_{x \to a} g(x),$$

then we do *not* know whether or not $\lim_{x\to a} h(x)$ exists.

For this reason, we call such a situation an *indeterminate form of type* $\frac{0}{0}$.

Similarly, if

$$\lim_{x \to a} f(x) = \pm \infty = \lim_{x \to a} g(x),$$

we would not be able to determine immediately if the limit of the quotient exists.

We call this situation an *indeterminate form of type* $\frac{\infty}{\infty}$.

Note: L'Hôpital's Rule gives us a means to evaluate such limts.

Observation: Let
$$h(x) = rac{f(x)}{g(x)}$$
 and

$$\lim_{x \to a} f(x) = 0 = \lim_{x \to a} g(x).$$

Assume that f(x) and g(x) have continuous derivatives with $g'(a) \neq 0$. We know that for x near a we have that

$$\frac{f(x)}{g(x)} \cong \frac{f(a) + f'(a)(x-a)}{g(a) + g'(a)(x-a)} = \frac{f'(a)}{g'(a)}$$

since f(a) = 0 = g(a).

This might lead us to guess that if $\lim_{x \to a} \frac{f(x)}{g(x)}$ exists, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}.$$
 (*)

Moreover, since f'(x) and g'(x) are continuous with $g'(a) \neq 0$, we also have

$$\frac{f'(a)}{g'(a)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$
 (**)

Combining (*) and (**) gives us

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Theorem: [L'Hôpital's Rule]

Assume that f'(x) and g'(x) exist near $x = a, g'(x) \neq 0$ near x = a except possibly at x = a, and that $\lim_{x \to a} \frac{f(x)}{g(x)}$ is an indeterminate form of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$. Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

provided that the latter limit exists (or is ∞ or $-\infty$).

Moreover, this rule remains valid for one-sided limits and for limits at $\pm\infty.$

Note: The proof of L'Hôpital's Rule uses an upgraded version of the MVT.

Example: Evaluate

$$\lim_{x \to 0} \frac{e^x - 1}{x}$$

Solution: Let $f(x) = e^x - 1$ and g(x) = x. Then

$$\lim_{x \to 0} e^x - 1 = e^0 - 1 = 0 = \lim_{x \to 0} x \Rightarrow \text{ type } \frac{0}{0}.$$

Since $f'(x)=e^x$ and g'(x)=1, by L'Hôpital's Rule

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{e^x}{1} = 1$$

Note:

$$\lim_{x \to 0} \frac{e^x - 1}{x}$$

is the derivative of $f(x) = e^x$ at x = 0.

Example: Evaluate

$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}$$

Solution: Let $f(x) = e^x - 1 - x$ and $g(x) = x^2$. Then

$$\lim_{x \to 0} e^x - 1 - x = 0 = \lim_{x \to 0} x^2 \Rightarrow \text{ type } \frac{0}{0}.$$

Then $f'(x) = e^x - 1$ and g'(x) = 2x and

$$\lim_{x \to 0} e^x - 1 = 0 = \lim_{x \to 0} 2x \Rightarrow \lim_{x \to 0} \frac{f'(x)}{g'(x)} \text{ is type } \frac{0}{0}.$$

Let $F(x) = f'(x) = e^x - 1$ and G(x) = g'(x) = 2x, then $F'(x) = e^x$ and G'(x) = 2 so

$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{F(x)}{G(x)} = \lim_{x \to 0} \frac{e^x}{2} = \frac{1}{2}$$

Example: Evaluate

$$\lim_{x \to 0^+} \frac{e^x - 1}{x^2}$$

Solution: Let $f(x) = e^x - 1$ and $g(x) = x^2$. Then $f'(x) = e^x$ and g'(x) = 2x, so we have

$$\lim_{x \to 0^+} \frac{e^x - 1}{x^2} = \lim_{x \to 0^+} \frac{e^x}{2x}$$

But

$$\lim_{x \to 0^+} 2x = 0.$$

so by applying L'Hôpital's Rule again we get

$$\lim_{x \to 0^+} \frac{e^x - 1}{x^2} = \lim_{x \to 0^+} \frac{e^x}{2x} = \lim_{x \to 0^+} \frac{e^x}{2} = \frac{1}{2}.$$

Warning: This is wrong since $\lim_{x \to 0^+} e^x = 1 \neq 0$ so

$$\lim_{x \to 0^+} \frac{e^x - 1}{x^2} = \lim_{x \to 0^+} \frac{e^x}{2x} = \infty$$

Example: Evaluate

$$\lim_{x \to \infty} \frac{\ln(x)}{x}$$

Solution: Let $f(x) = \ln(x)$ and g(x) = x. Then

$$\lim_{x \to \infty} f(x) = \infty = \lim_{x \to \infty} g(x),$$

so this is an indeterminate form of the type $\frac{\infty}{\infty}$.

Differentiating f(x) and g(x) gives us $f'(x) = \frac{1}{x}$ and g'(x) = 1. Therefore,

Thus

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \lim_{x \to \infty} \frac{\frac{1}{x}}{1}$$

$$= \lim_{x \to \infty} \frac{1}{x}$$

$$= 0.$$

Remark: Up until now we have dealt with two types of indeterminate forms which we have denoted by $\frac{0}{0}$ and $\frac{\infty}{\infty}$. There are five more standard indeterminate forms which we will denote by

$$0 \cdot \infty$$
, $\infty - \infty$, 1^{∞} , ∞^0 , and 0^0 .

For example, an indeterminate form of type $0 \cdot \infty$ arises from the function h(x) = f(x)g(x) when

$$\lim_{x \to a} f(x) = 0$$

and

$$\lim_{x \to a} g(x) = \infty.$$

Similarly, the function $(g(x))^{f(x)}$ would produce an indeterminate form of type ∞^0 .

Note: All of the above forms can be *converted* to forms of the type $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

Example: Evaluate

 $\lim_{x \to 0+} x \ln(x).$

Solution: This is an indeterminate form of type $0\cdot\infty$ since

 $\lim_{x \to 0^+} x = 0$

and

$$\lim_{x \to 0^+} \ln(x) = -\infty.$$

We can rewrite this example as

$$\lim_{x \to 0+} \frac{\ln(x)}{\frac{1}{x}}$$

which is type $\frac{\infty}{\infty}$. L'Hôpital's Rule gives us that

$$\lim_{x \to 0^+} x \ln(x) = \lim_{x \to 0^+} \frac{\ln(x)}{\frac{1}{x}}$$
$$= \lim_{x \to 0^+} \frac{1}{(\frac{-1}{x^2})}$$
$$= 0.$$

Example: Evaluate

$$\lim_{x
ightarrow\infty}\left(1+rac{1}{x}
ight)^x$$

Solution: This is type 1^{∞} . We write

$$\left(1+\frac{1}{x}\right)^x = e^{\ln\left(\left(1+\frac{1}{x}\right)^x\right)} = e^{x\ln\left(1+\frac{1}{x}\right)}$$

Since $x \ln \left(1 + rac{1}{x}\right)$ is type $0\cdot\infty$, we rewrite this as

$$\frac{\ln(1+\frac{1}{x})}{\frac{1}{x}}$$

(-1)

which is type $\frac{0}{0}$. L'Hôpital's Rule gives us that

So
$$\lim_{x \to \infty} \frac{\ln(1 + \frac{1}{x})}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\frac{(\frac{1}{x}^2)}{1 + \frac{1}{x}}}{(\frac{-1}{x})}$$
$$= \frac{1}{1 + \frac{1}{x}}$$
$$= 1.$$
$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e^{\lim_{x \to \infty} (\ln(1 + \frac{1}{x})^x)} = e.$$

Show that

$$\lim_{x \to 0} \frac{4(e^{x^3} - 1 - x^3 - \frac{x^6}{2})^2}{x^6 \tan(x^7) \sin(2x^5)} = \frac{1}{18}$$