L'Hôpital's Rule: Part II

Created by

Barbara Forrest and Brian Forrest

Theorem: [L'Hôpital's Rule]

Assume that f'(x) and g'(x) exist near x = a, $g'(x) \neq 0$ near x = a except possibly at x = a, and that $\lim_{x \to a} \frac{f(x)}{g(x)}$ is an indeterminate form of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$. Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

provided that the latter limit exists (or is ∞ or $-\infty$).

Moreover, this rule remains valid for one-sided limits and for limits at $\pm\infty.$

Remark: Up until now we have dealt with two types of indeterminate forms which we have denoted by $\frac{0}{0}$ and $\frac{\infty}{\infty}$. There are five more standard indeterminate forms which we will denote by

$$0 \cdot \infty, \quad \infty - \infty, \quad 1^{\infty}, \quad \infty^{0}, \quad \text{and} \quad 0^{0}.$$

For example, an indeterminate form of type $0 \cdot \infty$ arises from the function h(x) = f(x)g(x) when

$$\lim_{x \to a} f(x) = 0$$

and

$$\lim_{x \to a} g(x) = \infty.$$

Similarly, the function $(g(x))^{f(x)}$ would produce an indeterminate form of type ∞^0 .

Note: All of the above forms can be *converted* to forms of the type $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

Example: Evaluate

 $\lim_{x \to 0+} x \ln(x).$

Solution: This is an indeterminate form of type $0\cdot\infty$ since

 $\lim_{x \to 0^+} x = 0$

and

$$\lim_{x \to 0^+} \ln(x) = -\infty.$$

We can rewrite this example as

$$\lim_{x \to 0+} \frac{\ln(x)}{\frac{1}{x}}$$

which is type $\frac{\infty}{\infty}$. L'Hôpital's Rule gives us that

$$\lim_{x \to 0^+} x \ln(x) = \lim_{x \to 0^+} \frac{\ln(x)}{\frac{1}{x}}$$
$$= \lim_{x \to 0^+} \frac{1}{(\frac{-1}{x^2})}$$
$$= 0.$$

Example: Evaluate

$$\lim_{x o\infty}\left(1+rac{1}{x}
ight)^x$$

Solution: This is type 1^{∞} . We write

$$\left(1+rac{1}{x}
ight)^x=e^{\ln\left(\left(1+rac{1}{x}
ight)^x
ight)}=e^{x\ln\left(1+rac{1}{x}
ight)}$$

Since $x\ln\left(1+rac{1}{x}
ight)$ is type $0\cdot\infty$, we rewrite this as

$$\frac{\ln(1+\frac{1}{x})}{\frac{1}{x}}$$

(-1)

which is type $\frac{0}{0}$. L'Hôpital's Rule gives us that

So
$$\lim_{x \to \infty} \frac{\ln(1 + \frac{1}{x})}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\frac{\left(\frac{x^2}{x}\right)}{1 + \frac{1}{x}}}{\left(\frac{-1}{x^2}\right)}$$
$$= \lim_{x \to \infty} \frac{1}{1 + \frac{1}{x}}$$
$$= 1.$$
$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e^{x \to \infty} (\ln(1 + \frac{1}{x})^x) = e.$$

Show that

$$\lim_{x \to 0} \frac{4(e^{x^3} - 1 - x^3 - \frac{x^6}{2})^2}{x^6 \tan(x^7) \sin(2x^5)} = \frac{1}{18}$$