Applications of the MVT:
 Increasing Function Theorem

Created by

Barbara Forrest and Brian Forrest

Functions

Definition: [Increasing and Decreasing Functions]

Suppose that $f(x)$ is defined on an interval I.
i) We say that $f(x)$ is increasing on I if $f\left(x_{1}\right)<f\left(x_{2}\right)$ for all $x_{1}, x_{2} \in I$ with $x_{1}<x_{2}$.
ii) We say that $f(x)$ is decreasing on I if $f\left(x_{1}\right)>f\left(x_{2}\right)$ for all $x_{1}, x_{2} \in I$ with $x_{1}<x_{2}$.
iii) We say that $f(x)$ is non-decreasing on I if $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ for all $x_{1}, x_{2} \in I$ with $x_{1}<x_{2}$.
iv) We say that $f(x)$ is non-increasing on I if $f\left(x_{1}\right) \geq f\left(x_{2}\right)$ for all $x_{1}, x_{2} \in I$ with $x_{1}<x_{2}$.
Such functions are said to be monotonic on \boldsymbol{I}.

Question: How can we determine if a function $f(x)$ is either increasing or decreasing on an interval I ?

Increasing Function Theorem

Observation: Assume that

$$
f(x)=m x+b
$$

If $m>0$, the graph of the function slopes upward as we move from left to right. In other words, if $x_{1}<x_{2}$, then

$$
f\left(x_{1}\right)=m x_{1}+b<m x_{2}+b=f\left(x_{2}\right) .
$$

Note: $f^{\prime}(x)=m>0$ for all $x \in \mathbb{R}$.

Increasing Function Theorem

$$
f^{\prime}(x)>0
$$

$f(x)$ always increasing?

Question: If $f(x)$ is such that $f^{\prime}(x)>0$ for all $x \in I$, is $f(x)$ increasing on I ?

Increasing Function Theorem

Theorem: [The Increasing/Decreasing Function Theorem]
i) Let I be an interval and assume that $f^{\prime}(x)>0$ for all $\boldsymbol{x} \in I$. If $x_{1}<x_{2}$ are two points in I, then

$$
f\left(x_{1}\right)<f\left(x_{2}\right) .
$$

That is, $\boldsymbol{f}(\boldsymbol{x})$ is increasing on \boldsymbol{I}.
ii) Let I be an interval and assume that $f^{\prime}(x) \geq 0$ for all $x \in I$. If $x_{1}<x_{2}$ are two points in I, then

$$
f\left(x_{1}\right) \leq f\left(x_{2}\right)
$$

That is, $f(x)$ is non-decreasing on \boldsymbol{I}.
iii) Let I be an interval and assume that $f^{\prime}(x)<0$ for all $x \in I$. If $x_{1}<x_{2}$ are two points in I, then

$$
f\left(x_{1}\right)>f\left(x_{2}\right)
$$

That is, $f(x)$ is decreasing on I.
iv) Let I be an interval and assume that $f^{\prime}(x) \leq 0$ for all $x \in I$. If $x_{1}<x_{2}$ are two points in I, then

$$
f\left(x_{1}\right) \geq f\left(x_{2}\right)
$$

That is, $\boldsymbol{f}(\boldsymbol{x})$ is non-increasing on \boldsymbol{I}.

Increasing Function Theorem

i) Let I be an interval and assume that $f^{\prime}(x)>0$ for all $x \in I$. If $x_{1}<x_{2}$ are two points in I, then

$$
f\left(x_{1}\right)<f\left(x_{2}\right)
$$

Increasing Function Theorem

Proof of i): Assume that $f^{\prime}(x)>0$ for all $x \in I$. Let $x_{1}, x_{2} \in I$ with $x_{1}<x_{2}$. By the MVT there exists $c \in\left(x_{1}, x_{2}\right)$ with

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=f^{\prime}(c)>0
$$

Since $x_{2}-x_{1}>0$, we have

$$
f\left(x_{2}\right)-f\left(x_{1}\right)>0
$$

and hence that

$$
f\left(x_{2}\right)>f\left(x_{1}\right)
$$

Increasing Function Theorem

Question: If $f(x)$ is increasing on an interval I and differentiable on I, then must $f^{\prime}(x)>0$ for all $x \in I$?

Solution: Let $f(x)=x^{3}$. Since $f^{\prime}(x)=3 x^{2}$, we have

$$
f^{\prime}(0)=0
$$

but $f(x)$ is increasing on all of \mathbb{R}.

Increasing Function Theorem

Question:

1) Is the function $f(x)=x^{3}$ increasing on $[0,1]$? Yes!
2) If $f(x)$ is everywhere differentiable and if $f^{\prime}(c)>0$, does this mean that there is an open interval (a, b) containing c on which $f(x)$ is increasing? No!
