# Applications of the MVT: Increasing Function Theorem

Created by

Barbara Forrest and Brian Forrest

# **Functions**

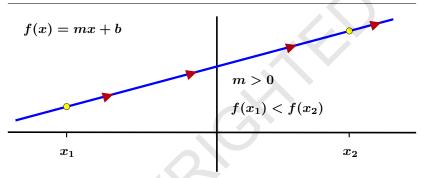
#### **Definition:** [Increasing and Decreasing Functions]

Suppose that f(x) is defined on an interval I.

- i) We say that f(x) is increasing on I if  $f(x_1) < f(x_2)$  for all  $x_1, x_2 \in I$  with  $x_1 < x_2$ .
- ii) We say that f(x) is *decreasing on I* if  $f(x_1) > f(x_2)$  for all  $x_1, x_2 \in I$  with  $x_1 < x_2$ .
- iii) We say that f(x) is *non-decreasing on* I if  $f(x_1) \le f(x_2)$  for all  $x_1, x_2 \in I$  with  $x_1 < x_2$ .
- iv) We say that f(x) is non-increasing on I if  $f(x_1) \ge f(x_2)$  for all  $x_1, x_2 \in I$  with  $x_1 < x_2$ .

Such functions are said to be *monotonic* on *I*.

**Question:** How can we determine if a function f(x) is either increasing or decreasing on an interval *I*?



**Observation:** Assume that

$$f(x) = mx + b.$$

If m > 0, the graph of the function slopes upward as we move from left to right. In other words, if  $x_1 < x_2$ , then

$$f(x_1) = mx_1 + b < mx_2 + b = f(x_2).$$

Note: f'(x) = m > 0 for all  $x \in \mathbb{R}$ .



Question: If f(x) is such that f'(x) > 0 for all  $x \in I$ , is f(x) increasing on I?

#### Theorem: [The Increasing/Decreasing Function Theorem]

i) Let I be an interval and assume that f'(x) > 0 for all  $x \in I$ . If  $x_1 < x_2$  are two points in I, then

$$f(x_1) < f(x_2)$$

That is, f(x) is increasing on I.

ii) Let I be an interval and assume that  $f'(x) \ge 0$  for all  $x \in I$ . If  $x_1 < x_2$  are two points in I, then

$$f(x_1) \leq f(x_2).$$

That is, f(x) is non-decreasing on I.

iii) Let I be an interval and assume that f'(x) < 0 for all  $x \in I$ . If  $x_1 < x_2$  are two points in I, then

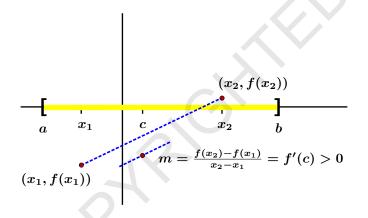
$$f(x_1) > f(x_2).$$

That is, f(x) is decreasing on I.

iv) Let I be an interval and assume that  $f'(x) \leq 0$  for all  $x \in I$ . If  $x_1 < x_2$  are two points in I, then

$$f(x_1) \ge f(x_2).$$

That is, f(x) is non-increasing on I.



i) Let I be an interval and assume that f'(x) > 0 for all  $x \in I$ . If  $x_1 < x_2$  are two points in I, then

 $f(x_1) < f(x_2).$ 

**Proof of i):** Assume that f'(x) > 0 for all  $x \in I$ . Let  $x_1, x_2 \in I$  with  $x_1 < x_2$ . By the MVT there exists  $c \in (x_1, x_2)$  with

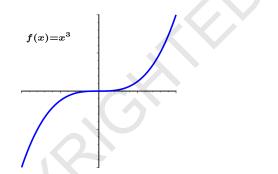
$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c) > 0.$$

Since  $x_2 - x_1 > 0$ , we have

$$f(x_2) - f(x_1) > 0$$

and hence that

 $f(x_2) > f(x_1).$ 



**Question:** If f(x) is increasing on an interval I and differentiable on I, then must f'(x) > 0 for all  $x \in I$ ?

**Solution:** Let  $f(x) = x^3$ . Since  $f'(x) = 3x^2$ , we have

$$f'(0)=0$$

but f(x) is increasing on all of  $\mathbb{R}$ .

### **Question:**

- 1) Is the function  $f(x) = x^3$  increasing on [0, 1]? Yes!
- 2) If f(x) is everywhere differentiable and if f'(c) > 0, does this mean that there is an open interval (a, b) containing c on which f(x) is increasing? No!