Applications of the MVT: The First Derivative Test

Created by
Barbara Forrest and Brian Forrest

First Derivative Test

Definition: [Critical Point]

A point c in the domain of a function $f(x)$ is called a critical point if either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.

Problem: Given a critical point c for $f(x)$, how can we determine if it is either a local maximum or a local minimum?

First Derivative Test

Theorem: [First Derivative Test]

Assume that c is a critical point of $f(x)$, and $f(x)$ is continuous at c.
i) If there is an interval (a, b) containing c such that

$$
\begin{array}{ll}
& f^{\prime}(x)<0 \\
\text { and } & \text { for all } x \in(a, c) \\
f^{\prime}(x)>0 & \text { for all } x \in(c, b),
\end{array}
$$

then $f(x)$ has a local minimum at $x=c$.
ii) If there is an interval (a, b) containing c such that

$$
\begin{array}{lll}
& f^{\prime}(x)>0 & \text { for all } x \in(a, c) \\
\text { and } & f^{\prime}(x)<0 & \text { for all } x \in(c, b),
\end{array}
$$

then $f(x)$ has a local maximum at $x=c$.

First Derivative Test

Proof of i)

Assume that $f^{\prime}(x)<0$ for all $x \in(a, c)$ and $f^{\prime}(x)>0$ for all $x \in(c, b)$.
i) Let $x \in(a, c)$. Then

$$
\frac{f(x)-f(c)}{x-c}=f^{\prime}(d)<0 \Rightarrow f(x)-f(c)>0
$$

ii) Let $x \in(c, b)$. Then

$$
\frac{f(x)-f(c)}{x-c}=f^{\prime}(d)>0 \Rightarrow f(x)-f(c)>0 .
$$

First Derivative Test

Example: Find all the critical points for

$$
f(x)=\frac{x^{3}}{3}-x
$$

and determine if each is a local maximum, a local minimum, or neither.
Solution: We need to examine the first derivative:

$$
f^{\prime}(x)=x^{2}-1=(x-1)(x+1)
$$

so the only critical points are $x=-1$ and $x=1$.

First Derivative Test

1) $f^{\prime}(x)$ changes from positive to negative at $x=-1 \Rightarrow$ local maximum.
2) $f^{\prime}(x)$ changes from negative to positive at $x=1 \Rightarrow$ local minimum.

First Derivative Test

