Curve Sketching Part II

Created by
Barbara Forrest and Brian Forrest

Curve Sketching

Recall:

Previously we used information about limits and continuity to sketch the graphs of various functions.

Strategy: Basic Curve Sketching (Part I)

Step 1: Determine the domain of $f(x)$.
Step 2: Determine any symmetries that the graph may have. In particular, test to see if the function is either even or odd.
Step 3: Determine, if possible, where the function changes sign and plot these points.
Step 4: Find any discontinuity points for $f(x)$.
Step 5: Evaluate the relevant one-sided and two-sided limits at the points of discontinuity and identify the nature of the discontinuities. In particular, indicate any removable discontinuity with a small circle to denote the hole.
Step 6: Using the information from step (5), draw any vertical asymptotes.
Step 7: Find any horizontal asymptotes by evaluating the limits of the function at $\pm \infty$, if applicable. Draw the horizontal asymptotes on your plot.
Step 8: Finally, use the information you have gathered above to construct as accurate a sketch as possible for the graph of the given function. It is often helpful to plot a few sample points as a guide.

Example: Basic Curve Sketching (Part I)

Example (revisited): Sketch the graph of

$$
f(x)=\frac{x e^{x}}{x^{3}-x}
$$

Solution:

Step 1: This function is defined everywhere except when the denominator is zero:

$$
x^{3}-x=x(x-1)(x+1)=0 .
$$

That is, everywhere except when $x=0$ and $x= \pm 1$.
Step 2: Since

$$
f(-x)=\frac{-x e^{-x}}{-x^{3}+x} \neq f(x) \text { and } f(-x)=\frac{x e^{-x}}{x^{3}-x} \neq-f(x)
$$

$f(x)$ is neither even nor odd. In fact, there are no obvious symmetries.

Example: Basic Curve Sketching (Part I)

Solution (continued):

Step 3: We first observe that

$$
f(x)=\frac{x e^{x}}{x^{3}-x}=\frac{e^{x}}{x^{2}-1}
$$

for all $x \neq 0$. Since e^{x} is never 0 , the function is never 0 .
The IVT tells us that we could only have a sign change at a point of discontinuity.

Example: Basic Curve Sketching (Part I)

Solution (continued):
Step 4:

$$
f(x)=\frac{x e^{x}}{x^{3}-x}
$$

The function is the ratio of two continuous functions. Therefore, $f(x)$ is discontinuous only at $x=0, x=-1$ and $x=1$ since these are the only points where the denominator is 0 .

Example: Basic Curve Sketching (Part I)

Solution (continued):

Step 5:

1) e^{x} is always positive and since $f(x)=\frac{x e^{x}}{x^{3}-x}=\frac{e^{x}}{x^{2}-1}$ for all $x \neq 0$, there is no sign change at $x=0$.
2) $f(x)$ goes from positive to negative as we move across $x=-1$ and then from negative to positive as we cross $x=1$ (moving left to right).

Example: Basic Curve Sketching (Part I)

Solution (continued):
Step 5 (continued):
3) Since for $x \neq 0$, we have

$$
f(x)=\frac{x e^{x}}{x^{3}-x}=\frac{e^{x}}{x^{2}-1}
$$

this gives us that

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{e^{x}}{x^{2}-1}=-1
$$

So $x=\mathbf{0}$ is a removable discontinuity.

Example: Basic Curve Sketching (Part I)

Solution (continued):
Step 5 (continued):
4) $x=1$ and $x=-1$ are both vertical asymptotes for $f(x)$.
5) Since $f(x)>0$ if $x>1$ or $x<-1$, and $f(x)<0$ if $x \neq 0$ and $-1<x<1$, we get that

$$
\begin{gathered}
\lim _{x \rightarrow 1^{+}} f(x)=\infty \\
\lim _{x \rightarrow 1^{-}} f(x)=-\infty
\end{gathered}
$$

and

$$
\begin{gathered}
\lim _{x \rightarrow-1^{+}} f(x)=-\infty \\
\lim _{x \rightarrow-1^{-}} f(x)=\infty
\end{gathered}
$$

Example: Basic Curve Sketching (Part I)

Solution (continued):
Step 6: Draw the vertical asymptotes and indicate the removable discontinuities on the plot.

Example: Basic Curve Sketching (Part I)

Solution (continued):
Step 7:

$$
f(x)=\frac{x e^{x}}{x^{3}-x}
$$

1) Since e^{x} grows much more rapidly than any polynomial for large positive values of x, we have

$$
\lim _{x \rightarrow \infty} f(x)=\infty
$$

2) But since e^{x} becomes very small for large negative values of x, we have

$$
\lim _{x \rightarrow-\infty} f(x)=0
$$

Thus, $y=0$ is a horizontal asymptote as $x \rightarrow-\infty$.

Example: Basic Curve Sketching (Part I)

Solution (continued):
Step 8: Sketch the graph of $f(x)$ using all of this information.

Basic Curve Sketching (Part II)

We can now use the information obtained from the derivative to refine the sketch of the function.

Strategy: Basic Curve Sketching (Part II)

Step 1: Complete the steps for Curve Sketching: Part 1.
Step 2: Calculate $f^{\prime}(x)$.
Step 3: Identify any critical points: locate where $f^{\prime}(x)=0$ or where $f^{\prime}(x)$ does not exist.

Step 4: Determine where $f(x)$ is increasing or decreasing by analysing the sign of $f^{\prime}(x)$ between the critical points.
Step 5: Test the critical points to determine if they are local maxima, local minima, or neither.
Step 6: Find $f^{\prime \prime}(x)$.
Step 7: Locate where $f^{\prime \prime}(x)=0$ or where $f^{\prime \prime}(x)$ does not exist. Use these points to divide the Real number line into intervals. Determine the concavity of $f(x)$ by analysing the sign of $f^{\prime \prime}(x)$ inside these intervals (if possible).
Step 8: Identify any points of inflection.
Step 9: Incorporate this information into your original sketch.

Example: Basic Curve Sketching (Part II)

Example (revisited): Enhance the sketch the graph of

$$
f(x)=\frac{x e^{x}}{x^{3}-x}
$$

by using the Basic Curve Sketching Steps (Part II).

Solution:

Step 1: Calculate $f^{\prime}(x)$. Taking the derivative of $f(x)$ we get

$$
f^{\prime}(x)=\frac{\left(x^{2}-2 x-1\right) e^{x}}{\left(x^{2}-1\right)^{2}}
$$

for $x \neq 0, x \neq \pm 1$.

Example: Basic Curve Sketching (Part II)

Solution (continued):

$$
f(x)=\frac{x e^{x}}{x^{3}-x}
$$

Step 2: A critical point $x=c$ occurs when c is in the domain of $f(x)$ and either $f^{\prime}(c)$ does not exist or $f^{\prime}(c)=0$. Now since $e^{x}>0$ for all x and the denominator is always positive for all $x \neq \pm 1$, it follows that $f^{\prime}(x)=0$ when

$$
x^{2}-2 x-1=0 .
$$

The quadratic formula tells us that these critical points occur when

$$
x=\frac{2 \pm \sqrt{4+4}}{2}=1 \pm \sqrt{2}
$$

Moreover,

$$
1+\sqrt{2} \approx 2.414213562
$$

and

$$
1-\sqrt{2} \approx-0.414213562
$$

This suggests that the local minimum is located at $x \approx 2.4141213562$ and the local maximum is located at $x \approx-0.414213562$. We will confirm these results in the next few steps.

Example: Basic Curve Sketching (Part II)

Solution (continued):

$$
f(x)=\frac{x e^{x}}{x^{3}-x}
$$

Step 3: We can determine where $f(x)$ is increasing or decreasing by analysing the sign of $f^{\prime}(x)$ in particular intervals and then applying the Increasing/Decreasing Function Theorem.

- $f(x)$ critical points and discontinuities

Example: Basic Curve Sketching (Part II)

Solution (continued):

$$
f(x)=\frac{x e^{x}}{x^{3}-x}
$$

Step 3: We can determine where $f(x)$ is increasing or decreasing by analysing the sign of $f^{\prime}(x)$ in particular intervals and then applying the Increasing/Decreasing Function Theorem.

- $f(x)$ critical points and discontinuities
- $f^{\prime}(x)$ test points

Example: Basic Curve Sketching (Part II)

Step 3 (continued): Apply the Increasing/Decreasing Function Theorem. You should verify these calculations.

Interval	Test Point	Calculate $x^{2}-2 x-1$	$f^{\prime}(x)$ positive or negative	$f(x)$ increasing or decreasing
$x<-1$	$x=-2$	$(-2)^{2}-2(-2)-1=+7$	$\begin{gathered} f^{\prime}(x)>0 \\ \text { (positive) } \end{gathered}$	$f(\boldsymbol{x})$ increasing
$-1<x<1-\sqrt{2}$	$x=-0.5$	$(-0.5)^{2}-2(-0.5)-1=+0.25$	$\begin{gathered} f^{\prime}(x)>0 \\ \text { (positive) } \end{gathered}$	$f(x)$ increasing
$1-\sqrt{2}<x<0$	$x=-0.2$	$(0.2)^{2}-2(0.2)-1=-1.36$	$\begin{gathered} f^{\prime}(x)<0 \\ \text { (negative) } \end{gathered}$	$\boldsymbol{f}(\boldsymbol{x})$ decreasing
$0<x<1$	$x=0.5$	$(0.5)^{2}-2(0.5)-1=-1.75$	$\begin{gathered} f^{\prime}(x)<0 \\ \text { (negative) } \end{gathered}$	$f(x)$ decreasing
$1<x<1+\sqrt{2}$	$x=2$	$(2)^{2}-2(2)-1=-1$	$\begin{gathered} f^{\prime}(x)<0 \\ \text { (negative) } \end{gathered}$	$f(x)$ decreasing
$x>1+\sqrt{2}$	$x=3$	$(3)^{2}-2(3)-1=+2$	$\begin{gathered} f^{\prime}(x)>0 \\ \text { (positive) } \end{gathered}$	$f(\boldsymbol{x})$ increasing

Example: Basic Curve Sketching (Part II)

