Applications of the MVT: Concavity

Created by

Barbara Forrest and Brian Forrest

Concavity

Question: If $f^{\prime \prime}(x)>0$ on some interval I, what can we say about the shape of the graph of the function $f(x)$?
Observation: $f^{\prime}(x)$ is increasing so the tangent lines to $f(x)$ rotate counter-clockwise $\Rightarrow f(x)$ is concave upwards.

Concavity

Question: What if $f^{\prime \prime}(x)<0$ on I ?
Observation: $f^{\prime}(x)$ is decreasing so tangent lines to $f(x)$ rotate clockwise $\Rightarrow f(x)$ is concave downwards.

Concave Upwards

Question: How can we quantify concave upwards?
Observation: The secant line lies above the graph of $f(x)$.

Concave Upwards

Definition: [Concave Upwards]

The graph of $f(x)$ is concave upwards on an interval I if for every pair of points a and b in I, the secant line joining ($a, f(a))$ and $(b, f(b))$ lies above the graph of $f(x)$.

Concave Downwards

Question: How can we quantify concave downwards?
Observation: The secant line lies below the graph of $f(x)$.

Concave Downwards

Definition: [Concave Downwards]

The graph of $f(x)$ is concave downwards on an interval I if for every pair of points a and b in I, the secant line joining $(a, f(a))$ and $(b, f(b))$ lies below the graph of $f(x)$.

Second Derivative Test for Concavity

Theorem: [Second Derivative Test for Concavity]
i) If $f^{\prime \prime}(x)>0$ for each x in an interval I, then the graph of $f(x)$ is concave upwards on I.
ii) If $f^{\prime \prime}(x)<0$ for each x in an interval I, then the graph of $f(x)$ is concave downwards on I.

Inflection Points

Example:

1) $f(x)$ is concave upwards on $[a, c]$.
2) $f(x)$ is concave downwards on $[c, b]$.
3) $f(x)$ changes its concavity at $x=c$. The point $(c, f(c))$ is called an inflection point.

Inflection Points

Definition: [Inflection Point]

A point c is called an inflection point for the function $f(x)$ if
i) $f(x)$ is continuous at $x=c$, and
ii) the concavity of $f(x)$ changes at $x=c$.

Important Note:

1) Typically an inflection point $x=c$ would occur when the second derivative changes from positive to negative, or vice versa.
2) If $f^{\prime \prime}(x)$ is continuous, the Intermediate Value Theorem requires that $f^{\prime \prime}(c)=0$.

Inflection Points

Theorem: [Test for Inflection Points]

If $f^{\prime \prime}(x)$ is continuous at $x=c$ and $(c, f(c))$ is an inflection point for $f(x)$, then

$$
f^{\prime \prime}(c)=0 .
$$

WARNING: This theorem shows us how to locate candidates for inflection points. However, $f^{\prime \prime}(c)=0$ does not mean that an inflection point always occurs when $x=c$.

Inflection Points

Example: Let $f(x)=x^{3}$. Then $f^{\prime \prime}(x)=6 x$.

1) $f^{\prime \prime}(x)<0$ if $x<0$ so $f(x)$ is concave downwards on $(-\infty, 0]$.
2) $f^{\prime \prime}(x)>0$ if $x>0$ so $f(x)$ is concave upwards on $[0, \infty)$.
3) The function has a point of inflection at $x=0$.

Inflection Points

Example: Let $f(x)=x^{4}$. Then $f^{\prime \prime}(x)=12 x^{2}$.

1) $f^{\prime \prime}(x)>0$ for all $x \neq 0$ so $f(x)$ is concave upwards on \mathbb{R}.
2) $f^{\prime \prime}(0)=0$ but the function does not have a point of inflection at $x=0$.

Inflection Points

Example:

The diagram represents the graph of the population \boldsymbol{P} of a particular bacteria over time t in a restricted environment.

Important Fact: The point of inflection occurs at the time t_{I} when the growth rate of the bacteria is at its highest value.

