Applications of the MVT: Concavity

Created by

Barbara Forrest and Brian Forrest

Concavity

Question: If f''(x) > 0 on some interval *I*, what can we say about the shape of the graph of the function f(x)?

Observation: f'(x) is increasing so the tangent lines to f(x) rotate counter-clockwise $\Rightarrow f(x)$ is **concave upwards**.

Concavity

Question: What if f''(x) < 0 on *I*?

Observation: f'(x) is decreasing so tangent lines to f(x) rotate clockwise $\Rightarrow f(x)$ is **concave downwards.**

Concave Upwards

Question: How can we quantify concave upwards?

Observation: The secant line lies **above** the graph of f(x).

Concave Upwards

Definition: [Concave Upwards]

The graph of f(x) is *concave upwards* on an interval I if for every pair of points a and b in I, the secant line joining (a, f(a)) and (b, f(b)) lies *above* the graph of f(x).

Concave Downwards

Question: How can we quantify concave downwards?

Observation: The secant line lies **below** the graph of f(x).

Concave Downwards

Definition: [Concave Downwards]

The graph of f(x) is *concave downwards* on an interval I if for every pair of points a and b in I, the secant line joining (a, f(a)) and (b, f(b)) lies *below* the graph of f(x).

Second Derivative Test for Concavity

Theorem: [Second Derivative Test for Concavity]

- i) If f''(x) > 0 for each x in an interval I, then the graph of f(x) is concave upwards on I.
- ii) If f''(x) < 0 for each x in an interval I, then the graph of f(x) is concave downwards on I.

Example:

- 1) f(x) is concave upwards on [a, c].
- 2) f(x) is concave downwards on [c, b].
- 3) f(x) changes its concavity at x = c. The point (c, f(c)) is called an *inflection point*.

Definition: [Inflection Point]

A point c is called an *inflection point* for the function f(x) if

i) f(x) is continuous at x = c, and

ii) the concavity of f(x) changes at x = c.

Important Note:

- 1) Typically an inflection point x = c would occur when the second derivative changes from positive to negative, or vice versa.
- If f''(x) is continuous, the Intermediate Value Theorem requires that f''(c) = 0.

Theorem: [Test for Inflection Points]

If $f^{\,\prime\prime}(x)$ is continuous at x=c and (c,f(c)) is an inflection point for f(x), then

 $f^{\prime\prime}(c)=0.$

WARNING: This theorem shows us how to *locate candidates* for inflection points. However, f''(c) = 0 does *not* mean that an inflection point always occurs when x = c.

Example: Let $f(x) = x^3$. Then f''(x) = 6x.

- 1) f''(x) < 0 if x < 0 so f(x) is concave downwards on $(-\infty, 0]$.
- 2) f''(x) > 0 if x > 0 so f(x) is concave upwards on $[0, \infty)$.
- 3) The function has a point of inflection at x = 0.

Example: Let $f(x) = x^4$. Then $f''(x) = 12x^2$.

- 1) f''(x) > 0 for all $x \neq 0$ so f(x) is concave upwards on \mathbb{R} .
- f "(0) = 0 but the function does *not* have a point of inflection at x = 0.

Example:

The diagram represents the graph of the population P of a particular bacteria over time t in a restricted environment.

Important Fact: The point of inflection occurs at the time t_I when the growth rate of the bacteria is at its highest value.