Applications of the MVT: Comparing Functions through their
 Derivatives

Created by

Barbara Forrest and Brian Forrest

Comparing Functions

Remark:

If $f(x)$ and $g(x)$ are such $f^{\prime}(x) \leq g^{\prime}(x)$ on an interval I, we cannot conclude that $f(x) \leq g(x)$ on I.

However, if we assume that

$$
f(a)=g(a)
$$

we can say more.

Comparing Functions

Theorem:

Assume that $f(x)$ and $g(x)$ are continuous at $x=a$ with $f(a)=g(a)$.
i) If both $f(x)$ and $g(x)$ are differentiable for $x>a$ and if $f^{\prime}(x) \leq g^{\prime}(x)$ for all $x>a$, then

$$
f(x) \leq g(x)
$$

for all $x>a$.
ii) If both $f(x)$ and $g(x)$ are differentiable for $x<a$ and if $f^{\prime}(x) \leq g^{\prime}(x)$ for all $x<a$, then

$$
f(x) \geq g(x)
$$

for all $x<a$.

Comparing Functions

Proof of i): Assume that $f(x)$ and $g(x)$ are differentiable for $x>a$, $f^{\prime}(x) \leq g^{\prime}(x)$ for all $x>a$, and that $f(a)=g(a)$.
Let

$$
h(x)=g(x)-f(x)
$$

Then

$$
h(a)=g(a)-f(a)=0 \quad \text { and } \quad h^{\prime}(x)=g^{\prime}(x)-f^{\prime}(x) \geq 0
$$

for all $x>a$. So $h(x)$ is non-decreasing on $[a, \infty)$ and
for all $x>a$.

$$
h(x)=g(x)-f(x) \geq 0
$$

Comparing Functions

Example: Show that

$$
x-\frac{x^{2}}{2}<\ln (x+1)<x
$$

for all $\boldsymbol{x}>\mathbf{0}$.
Solution:
Note that if $f(x)=x-\frac{x^{2}}{2}$,
$g(x)=\ln (x+1)$ and $h(x)=x$, then
$f(0)=g(0)=h(0)=0$.
We also have that
$f^{\prime}(x)=1-x, g^{\prime}(x)=\frac{1}{x+1}, h^{\prime}(x)=1$.
For $\boldsymbol{x}>\mathbf{0}$
and

$$
g^{\prime}(x)=\frac{1}{x+1}<h^{\prime}(x)=1 \Rightarrow g(x)<h(x)
$$

$$
\begin{aligned}
1-x^{2}=(1-x)(1+x)<1 & \Rightarrow f^{\prime}(x)=1-x<g^{\prime}(x)=\frac{1}{x+1} \\
& \Rightarrow f(x)<g(x)
\end{aligned}
$$

$\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$

Example: Show that

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e
$$

Solution: Since

$$
x-\frac{x^{2}}{2}<\ln (1+x)<x
$$

for all $\boldsymbol{x}>\boldsymbol{0}$, we get

$$
1-\frac{x}{2}<\frac{\ln (1+x)}{x}<1
$$

for all $\boldsymbol{x}>\boldsymbol{0}$. Since

$$
\lim _{x \rightarrow 0^{+}} 1-\frac{x}{2}=1=\lim _{x \rightarrow 0^{+}} 1, \text { we have } \lim _{x \rightarrow 0^{+}} \frac{\ln (1+x)}{x}=1
$$

As $\frac{1}{n} \rightarrow 0$ when $n \rightarrow \infty$,

$$
\lim _{n \rightarrow \infty} \frac{\left.\ln \left(1+\frac{1}{n}\right)\right)}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \ln \left(1+\frac{1}{n}\right)^{n}=1
$$

So

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\lim _{n \rightarrow \infty} e^{\ln \left(1+\frac{1}{n}\right)^{n}}=e^{\left(\lim _{n \rightarrow \infty} \ln \left(1+\frac{1}{n}\right)^{n}\right)}=e
$$

$\lim _{n \rightarrow \infty}\left(1+\frac{\alpha}{n}\right)^{n}$

Theorem:

Let $\alpha \in \mathbb{R}$. Then

$$
\lim _{n \rightarrow \infty}\left(1+\frac{\alpha}{n}\right)^{n}=e^{\alpha}
$$

