Applications of the MVT: Comparing Functions through their Derivatives

Created by

Barbara Forrest and Brian Forrest

Remark:

If f(x) and g(x) are such $f'(x) \le g'(x)$ on an interval I, we cannot conclude that $f(x) \le g(x)$ on I.

However, if we assume that

$$f(a) = g(a)$$

we can say more.

Theorem:

Assume that f(x) and g(x) are continuous at x = a with f(a) = g(a).

i) If both f(x) and g(x) are differentiable for x > a and if $f'(x) \le g'(x)$ for all x > a, then

$$f(x) \leq g(x)$$

for all x > a.

ii) If both f(x) and g(x) are differentiable for x < a and if $f'(x) \le g'(x)$ for all x < a, then

 $f(x) \geq g(x)$

for all x < a.

Proof of i): Assume that f(x) and g(x) are differentiable for x > a, $f'(x) \le g'(x)$ for all x > a, and that f(a) = g(a). Let

$$h(x) = g(x) - f(x).$$

Then

$$h(a) = g(a) - f(a) = 0$$
 and $h'(x) = g'(x) - f'(x) \ge 0$

for all x > a. So h(x) is non-decreasing on $[a,\infty)$ and

for all
$$x > a$$
. $h(x) = g(x) - f(x) \ge 0$

Example: Show that

$$x - \frac{x^2}{2} < \ln(x+1) < x$$

for all x > 0.

Solution:

Note that if $f(x) = x - \frac{x^2}{2}$, $g(x) = \ln(x+1)$ and h(x) = x, then f(0) = g(0) = h(0) = 0.

We also have that

$$f'(x) = 1 - x, \ g'(x) = \frac{1}{x+1}, \ h'(x) = 1.$$

For x > 0

$$g'(x) = \frac{1}{x+1} < h'(x) = 1 \Rightarrow g(x) < h(x)$$

and

$$1 - x^{2} = (1 - x)(1 + x) < 1 \quad \Rightarrow \quad f'(x) = 1 - x < g'(x) = \frac{1}{x + 1}$$
$$\Rightarrow \quad f(x) < g(x).$$

$\lim_{n \to \infty} (1 + \frac{\alpha}{n})^n$

Theorem:

Let $\alpha \in \mathbb{R}$. Then

 $\lim_{n\to\infty}(1+\frac{\alpha}{n})^n=e^{\alpha}.$