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Problem 1: A car travels
forward a distance of 110 km
in one hour along a road with
a posted speed limit of
100 km/hr. Prove that at
some point in the journey the
car was speeding.

Average velocity = 110 km/hr.

At t0 the tangent line is parallel to the secant line⇒ v(to) = 110 km/hr.

Problem 2: If a car travels at most 100 km/hr, what is the maximum distance it
could travel in exactly 1 hour?COPYRIG
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A Problem

Observation: Assume that f(x) is continuous on [a, b] and is
differentiable on (a, b) with

m ≤ f ′(x) ≤M

for each x ∈ (a, b).

Let x ∈ [a, b]. Then Mean Value Theorem is true on the interval [a, x].
Hence there exists a c between a and x such that

f ′(c) =
f(x)− f(a)

x− a
.

Since m ≤ f ′(x) ≤M , we get that

m ≤
f(x)− f(a)

x− a
≤M .

So f(a) + m(x− a) ≤ f(x) ≤ f(a) + M(x− a)

for all x ∈ [a, b].COPYRIG
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MVT and Bounded Derivatives
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Assume that m ≤ f ′(x) ≤M for all x ∈ [a, b].COPYRIG
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Functions with Bounded Derivatives

Theorem: [Bounded Derivative Theorem]

Assume that f(x) is continuous on [a, b], differentiable on (a, b), and
that

m ≤ f ′(x) ≤M

for each x ∈ (a, b). Then

f(a) + m(x− a) ≤ f(x) ≤ f(a) + M(x− a)

for all x ∈ [a, b].

Remark: If we return to the scenario of a car traveling one hour along a
road without exceeding a speed of 100 km/hr, then the previous theorem
tells us immediately that the maximum distance the car could have
traveled in that time frame was 100 km as we expected.COPYRIG
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Functions with Bounded Derivatives

3

4

5

1

4 ≤ f(1) ≤ 5

m = 1

m = 2
f(x)

Example: Assume that

f(0) = 3

and that

1 ≤ f ′(x) ≤ 2

for all x ∈ [0, 1]. Show that

4 ≤ f(1) ≤ 5.

Solution: We know that

f(0)+1·(1−0) ≤ f(1) ≤ f(0)+2·(1−0)

so

4 = 3 + 1 ≤ f(1) ≤ 3 + 2 = 5.COPYRIG
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