# Applications of the MVT: Functions with Bounded Derivatives

Created by

Barbara Forrest and Brian Forrest

## **A Problem**



**Problem 1:** A car travels forward a distance of 110 km in one hour along a road with a posted speed limit of 100 km/hr. Prove that at some point in the journey the car was speeding.

Average velocity = 110 km/hr.

At  $t_0$  the tangent line is parallel to the secant line  $\Rightarrow v(t_o) = 110$  km/hr.

**Problem 2:** If a car travels at most 100 km/hr, what is the maximum distance it could travel in exactly 1 hour?

# **A Problem**

**Observation:** Assume that f(x) is continuous on [a, b] and is differentiable on (a, b) with

$$m \leq f'(x) \leq M$$

for each  $x \in (a, b)$ .

Let  $x \in [a, b]$ . Then Mean Value Theorem is true on the interval [a, x]. Hence there exists a c between a and x such that

$$f'(c) = \frac{f(x) - f(a)}{x - a}$$

Since  $m \leq f'(x) \leq M$ , we get that

$$m \le \frac{f(x) - f(a)}{x - a} \le M.$$

So

for all

$$f(a)+m(x-a)\leq f(x)\leq f(a)+M(x-a)$$
 $x\in [a,b].$ 

#### **MVT and Bounded Derivatives**



Assume that  $m \leq f'(x) \leq M$  for all  $x \in [a, b]$ .

#### **Theorem: [Bounded Derivative Theorem]**

Assume that f(x) is continuous on [a, b], differentiable on (a, b), and that

 $m \leq f^{\,\prime}(x) \leq M$ 

for each  $x \in (a, b)$ . Then

$$f(a) + m(x - a) \le f(x) \le f(a) + M(x - a)$$

for all  $x \in [a, b]$ .

**Remark:** If we return to the scenario of a car traveling one hour along a road without exceeding a speed of 100 km/hr, then the previous theorem tells us immediately that the maximum distance the car could have traveled in that time frame was 100 km as we expected.

### **Functions with Bounded Derivatives**



Example: Assume that

f(0) = 3

and that

 $1 \le f'(x) \le 2$ 

for all  $x \in [0, 1]$ . Show that

 $4 \le f(1) \le 5.$ 

Solution: We know that

 $f(0){+}1{\cdot}(1{-}0) \leq f(1) \leq f(0){+}2{\cdot}(1{-}0)$ 

SO

 $4 = 3 + 1 \le f(1) \le 3 + 2 = 5.$