Applications of the MVT: Antiderivatives

Created by
Barbara Forrest and Brian Forrest

Antiderivatives

Problem: Given a function $f(x)$ does there exist a function $F(x)$ so that

$$
F^{\prime}(x)=f(x) ?
$$

Definition: [Antiderivative]

Given a function $f(x)$, an antiderivative is a function $F(x)$ such that

$$
F^{\prime}(x)=f(x)
$$

If $\boldsymbol{F}^{\prime}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})$ for all \boldsymbol{x} in an interval \boldsymbol{I}, we say that $\boldsymbol{F}(\boldsymbol{x})$ is an antiderivative for $f(x)$ on I.

Antiderivatives

Example: Consider $f(x)=x^{2}$.
Let $\boldsymbol{F}(x)=\frac{x^{3}}{3}$. Then

$$
F^{\prime}(x)=\frac{3 x^{3-1}}{3}=x^{2}=f(x)
$$

so $\boldsymbol{F}(x)=\frac{x^{3}}{3}$ is an antiderivative of $f(x)$.

Note: Notice that

$$
G(x)=\frac{x^{3}}{3}+2
$$

is also an antiderivative of $f(x)=x^{2}$.

Antiderivatives

Recall: If a function $\boldsymbol{h}(\boldsymbol{x})$ is constant on an open interval \boldsymbol{I}, then $h^{\prime}(x)=0$ for all $x \in I$.

Important Observation: Given any function $f(x)$, if $\boldsymbol{F}(x)$ is an antiderivative of $f(x)$, then so is

$$
G(x)=F(x)+C
$$

for any $C \in \mathbb{R}$.
Question: Are all antiderivatives of $f(x)$ of the form

$$
G(x)=F(x)+C
$$

for some $C \in \mathbb{R}$?

Constant Function Theorem

Theorem: [Constant Function Theorem]

Assume that $f^{\prime}(x)=0$ for all $x \in I$, then there exists a $\alpha \in \mathbb{R}$ such that $f(x)=\alpha$ for every $x \in I$.

Proof: Let x_{1} be any point in I and let

$$
f\left(x_{1}\right)=\alpha .
$$

Pick any other $x_{2} \in I$. Then the MVT guarantees us that there exists a c between x_{1} and x_{2} with

$$
f^{\prime}(c)=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

Then since $f^{\prime}(c)=0$, we have
and hence

$$
0=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

$$
f\left(x_{2}\right)=f\left(x_{1}\right)=\alpha
$$

Constant Function Theorem

Observation: We know that if $f(x)=e^{x}$, then

$$
f(x)=f^{\prime}(x)
$$

for all $x \in \mathbb{R}$.

Question: Are there other functions $g(x)$ with

$$
g(x)=g^{\prime}(x) ?
$$

Constant Function Theorem

Example: Show that if $\boldsymbol{g}(\boldsymbol{x})$ is such that

$$
g(x)=g^{\prime}(x)
$$

for all $\boldsymbol{x} \in \mathbb{R}$, there exists a $C \in \mathbb{R}$ so that

$$
g(x)=C e^{x}
$$

Solution: Let

$$
h(x)=\frac{g(x)}{e^{x}}
$$

Differentiate $h(x)$ using the quotient rule to get

$$
\begin{aligned}
h^{\prime}(x) & =\frac{e^{x} g^{\prime}(x)-\frac{d}{d x}\left(e^{x}\right) g(x)}{\left(e^{x}\right)^{2}} \\
& =\frac{e^{x} g(x)-e^{x} g(x)}{e^{2 x}} \\
& =0
\end{aligned}
$$

since $g^{\prime}(x)=\boldsymbol{g}(\boldsymbol{x})$ and $\frac{d}{d x}\left(e^{x}\right)=e^{x}$. So there exists $C \in \mathbb{R}$ with

$$
h(x)=\frac{g(x)}{e^{x}}=C \Rightarrow g(x)=C e^{x}
$$

Antiderivatives

Theorem: [The Antiderivative Theorem]

Assume that $f^{\prime}(x)=g^{\prime}(x)$ for all $x \in I$. Then there exists an α such that

$$
f(x)=g(x)+\alpha
$$

for every $\boldsymbol{x} \in \boldsymbol{I}$.

Proof: Let

$$
H(x)=f(x)-g(x) .
$$

Then

$$
H^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)=0
$$

for each $x \in I$. Therefore, there exists $\alpha \in \mathbb{R}$ so that

$$
H(x)=\alpha \Rightarrow f(x)=g(x)+\alpha
$$

for all $x \in I$.

Indefinite Integrals

Leibniz Notation for Antiderivatives:
We will denote the family of antiderivatives of a function $f(x)$ by

$$
\int f(x) d x
$$

For example,

$$
\int x^{2} d x=\frac{x^{3}}{3}+C
$$

The symbol

$$
\int f(x) d x
$$

is called the indefinite integral of $f(x)$. The function $f(x)$ is called the integrand.

Indefinite Integrals

Theorem: [Power Rule for Antiderivatives]
If $\alpha \neq-1$, then

$$
\int x^{\alpha} d x=\frac{x^{\alpha+1}}{\alpha+1}+C
$$

Note: To check that this theorem is correct we need only differentiate.
Since

$$
\frac{d}{d x}\left(\frac{x^{\alpha+1}}{\alpha+1}+C\right)=x^{\alpha}
$$

we have found all of the antiderivatives of x^{α}.

Indefinite Integrals

Examples:

1)

$$
\int \frac{1}{x} d x=\ln (|x|)+C
$$

2)

$$
\int e^{x} d x=e^{x}+C
$$

3)

$$
\int \sin (x) d x=-\cos (x)+C
$$

4)

$$
\int \cos (x) d x=\sin (x)+C
$$

5)

$$
\int \sec ^{2}(x) d x=\tan (x)+C
$$

Indefinite Integrals

Examples:
6)

$$
\int \frac{1}{1+x^{2}} d x=\arctan (x)+C
$$

7)

$$
\int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin (x)+C .
$$

8)

$$
\int \frac{-1}{\sqrt{1-x^{2}}} d x=\arccos (x)+C .
$$

Remark: It can be shown that there is no nice function that represents

$$
\int e^{x^{2}} d x
$$

