Applications of the MVT: Antiderivatives

Created by

Barbara Forrest and Brian Forrest

Antiderivatives

Problem: Given a function f(x) does there exist a function F(x) so that

$$F'(x) = f(x)?$$

Definition: [Antiderivative]

Given a function f(x), an *antiderivative* is a function F(x) such that

$$F'(x) = f(x).$$

If F'(x) = f(x) for all x in an interval I, we say that F(x) is an antiderivative for f(x) on I.

Antiderivatives

Example: Consider $f(x) = x^2$.

Let
$$F(x)=rac{x^3}{3}.$$
 Then $F'(x)=rac{3x^{3-1}}{3}=x^2=f(x),$

so $F(x) = \frac{x^3}{3}$ is an antiderivative of f(x).

Note: Notice that

$$G(x) = \frac{x^3}{3} + 2$$

is also an antiderivative of $f(x) = x^2$.

Recall: If a function h(x) is constant on an open interval I, then h'(x) = 0 for all $x \in I$.

Important Observation: Given any function f(x), if F(x) is an antiderivative of f(x), then so is

G(x) = F(x) + C

for any $C \in \mathbb{R}$.

Question: Are all antiderivatives of f(x) of the form

G(x) = F(x) + C

for some $C \in \mathbb{R}$?

Theorem: [Constant Function Theorem]

Assume that f'(x) = 0 for all $x \in I$, then there exists a $\alpha \in \mathbb{R}$ such that $f(x) = \alpha$ for every $x \in I$.

Proof: Let x_1 be any point in I and let

$$f(x_1) = \alpha.$$

Pick any other $x_2 \in I$. Then the MVT guarantees us that there exists a c between x_1 and x_2 with

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Then since f'(c) = 0, we have

$$0 = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$
$$f(x_2) = f(x_1) = \alpha.$$

and hence

Constant Function Theorem

Observation: We know that if $f(x) = e^x$, then

$$f(x) = f'(x)$$

for all $x \in \mathbb{R}$.

Question: Are there other functions g(x) with

$$g(x) = g'(x)?$$

Constant Function Theorem

Example: Show that if g(x) is such that

$$g(x) = g'(x)$$

for all $x \in \mathbb{R}$, there exists a $C \in \mathbb{R}$ so that

$$g(x) = Ce^x.$$

Solution: Let

$$h(x) = \frac{g(x)}{e^x}$$

Differentiate h(x) using the quotient rule to get

$$h'(x) = \frac{e^x g'(x) - \frac{d}{dx}(e^x)g(x)}{(e^x)^2}$$
$$= \frac{e^x g(x) - e^x g(x)}{e^{2x}}$$
$$= 0$$

since $g^{\,\prime}(x)=g(x)$ and $rac{d}{dx}(e^x)=e^x.$ So there exists $C\in\mathbb{R}$ with

$$h(x) = \frac{g(x)}{e^x} = C \Rightarrow g(x) = Ce^x$$

Antiderivatives

Theorem: [The Antiderivative Theorem]

Assume that f'(x) = g'(x) for all $x \in I$. Then there exists an α such that

$$f(x) = g(x) + \alpha$$

for every $x \in I$.

Proof: Let

$$H(x) = f(x) - g(x).$$

Then

$$H'(x) = f'(x) - g'(x) = 0$$

for each $x \in I$. Therefore, there exists $\alpha \in \mathbb{R}$ so that

$$H(x)=\alpha \Rightarrow f(x)=g(x)+\alpha$$

for all $x \in I$.

Leibniz Notation for Antiderivatives:

We will denote the *family of antiderivatives* of a function f(x) by

 $\int f(x) \, dx.$

For example,

$$\int x^2 dx = rac{x^3}{3} + C$$

f(x) dx

The symbol

is called the *indefinite integral of* f(x). The function f(x) is called the *integrand*.

Indefinite Integrals

Theorem: [Power Rule for Antiderivatives]

If lpha
eq -1, then $\int x^lpha \, dx = rac{x^{lpha+1}}{lpha+1} + C.$

Note: To check that this theorem is correct we need only differentiate.

Since

$$rac{d}{dx}\left(rac{x^{lpha+1}}{lpha+1}+C
ight)=x^{lpha},$$

we have found all of the antiderivatives of x^{α} .

Indefinite Integrals

Examples:

1)
$$\int \frac{1}{x} dx = \ln(|x|) + C.$$
2)
$$\int e^x dx = e^x + C.$$
3)
$$\int \sin(x) dx = -\cos(x) + C.$$
4)
$$\int \cos(x) dx = \sin(x) + C.$$
5)
$$\int \sec^2(x) dx = \tan(x) + C.$$

Indefinite Integrals

Examples:

6)
$$\int \frac{1}{1+x^2} dx = \arctan(x) + C.$$

7)
$$\int \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin(x) + C.$$

8)
$$\int \frac{-1}{\sqrt{1-x^2}} \, dx = \arccos(x) + C.$$

Remark: It can be shown that there is no nice function that represents

$$\int e^{x^2} dx.$$